8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biochemical characterization and purification of a binding protein for 24,25-dihydroxyvitamin D3 from chick intestine.

      1 , , ,
      The Journal of endocrinology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An earlier study revealed that 24R,25-dihydroxyvitamin D(3) (24R,25(OH)(2)D(3)) inhibits the rapid actions of 1,25(OH)(2)D(3) on stimulation of calcium transport in perfused duodena, as well as activation of protein kinases C and A. In the present work, a specific binding protein (24,25-BP) has been identified and partially characterized. Percoll-gradient resolution of differential centrifugation fractions from mucosal homogenates revealed the highest levels of specific [(3)H]24R,25(OH)(2)D(3) binding to be in lysosomes (approximately eight to tenfold greater than in basal lateral membrane fractions). Incubation of isolated enterocytes with 6.5 nM [(3)H]24R,25(OH)(2)D(3) for 10 s also demonstrated targeting of the steroid to lysosomal fractions. Using freshly isolated lysosomal fractions, time course studies indicated maximal specific binding after a 2-h incubation on ice. Western analyses revealed that the serum transport protein, DBP (vitamin D binding protein), was absent from both lysosomal and basal lateral membrane fractions. Protein dependence studies demonstrated linear binding between 0.05 and 0.155 mg of lysosomal protein. Saturation analyses yielded K(d)=7.4+/- 1.8 nM, B(max)=142+/-16 fmol/mg protein for lysosomes, and K(d)=8.5 nM, B(max)=149+/-25 fmol/mg protein for basal lateral membranes. Hill analyses of lysosomal binding yielded a Hill coefficient of 0.57+/-0.11, indicative of negative cooperativity. Studies with lysosomal proteins revealed a 81%+/-7% competition of 24S,25(OH)(2)D(3) with [(3)H]24R,25(OH)(2)D(3) for binding (P>0.05, relative to competition with 24R,25(OH)(2)D(3)), while 25(OH)D(3) and 1,25(OH)(2)D(3) yielded 53%+/-13% and 39%+/-11% competition respectively (each, P<0.05, relative to competition with 24R,25(OH)(2)D(3)). The apparent affinity of 24S,25(OH)(2)D(3) for 24,25-BP led to testing of the metabolites effectiveness in the perfused duodenal loop system. Vascular perfusion with 130 pM 1,25(OH)(2)D(3) stimulated (45)Ca transport to 2.5-fold above control levels after 40 min, while simultaneous perfusion with 6.5 nM 24S,25(OH)(2)D(3) and 130 pM 1,25(OH)(2)D(3) abolished the stimulatory activity completely. Purification of the 24,25-BP by chromatography revealed a single protein band upon SDS-PAGE and silver staining of 66 kDa. The combined results suggest that 24R,25(OH)(2)D(3) may mediate its hormonal activities through a specific binding protein.

          Related collections

          Author and article information

          Journal
          J. Endocrinol.
          The Journal of endocrinology
          0022-0795
          0022-0795
          Jan 2002
          : 172
          : 1
          Affiliations
          [1 ] Department of Nutrition and Food Sciences and the Biotechnology Center, Utah State University, Logan, Utah 84322-8700, USA. nemere@cc.usu.edu
          Article
          JOE04404
          10.1677/joe.0.1720211
          11786388
          d71d6d94-e8a7-4ab7-a4ff-00ef8357331f
          History

          Comments

          Comment on this article