13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Foliar fungal communities strongly differ between habitat patches in a landscape mosaic

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores.

          Methods

          We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2) region.

          Results

          In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre.

          Discussion

          These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Patterns and processes of microbial community assembly.

          Recent research has expanded our understanding of microbial community assembly. However, the field of community ecology is inaccessible to many microbial ecologists because of inconsistent and often confusing terminology as well as unnecessarily polarizing debates. Thus, we review recent literature on microbial community assembly, using the framework of Vellend (Q. Rev. Biol. 85:183-206, 2010) in an effort to synthesize and unify these contributions. We begin by discussing patterns in microbial biogeography and then describe four basic processes (diversification, dispersal, selection, and drift) that contribute to community assembly. We also discuss different combinations of these processes and where and when they may be most important for shaping microbial communities. The spatial and temporal scales of microbial community assembly are also discussed in relation to assembly processes. Throughout this review paper, we highlight differences between microbes and macroorganisms and generate hypotheses describing how these differences may be important for community assembly. We end by discussing the implications of microbial assembly processes for ecosystem function and biodiversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and functions of the bacterial microbiota of plants.

            Plants host distinct bacterial communities on and inside various plant organs, of which those associated with roots and the leaf surface are best characterized. The phylogenetic composition of these communities is defined by relatively few bacterial phyla, including Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. A synthesis of available data suggests a two-step selection process by which the bacterial microbiota of roots is differentiated from the surrounding soil biome. Rhizodeposition appears to fuel an initial substrate-driven community shift in the rhizosphere, which converges with host genotype-dependent fine-tuning of microbiota profiles in the selection of root endophyte assemblages. Substrate-driven selection also underlies the establishment of phyllosphere communities but takes place solely at the immediate leaf surface. Both the leaf and root microbiota contain bacteria that provide indirect pathogen protection, but root microbiota members appear to serve additional host functions through the acquisition of nutrients from soil for plant growth. Thus, the plant microbiota emerges as a fundamental trait that includes mutualism enabled through diverse biochemical mechanisms, as revealed by studies on plant growth-promoting and plant health-promoting bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global dispersal of free-living microbial eukaryote species.

              The abundance of individuals in microbial species is so large that dispersal is rarely (if ever) restricted by geographical barriers. This "ubiquitous" dispersal requires an alternative view of the scale and dynamics of biodiversity at the microbial level, wherein global species number is relatively low and local species richness is always sufficient to drive ecosystem functions.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                3 November 2016
                2016
                : 4
                : e2656
                Affiliations
                [1 ]BIOGECO, UMR 1202, INRA, Université de Bordeaux , Cestas, France
                [2 ]SAVE, UMR 1065, INRA, ISVV, Université de Bordeaux , Villenave d’Ornon, France
                [3 ]BIOGECO, UMR 1202, INRA, Université de Bordeaux , Pessac, France
                Article
                2656
                10.7717/peerj.2656
                5101609
                d71e3c30-9cc6-4315-9a2d-2374390b2b13
                © 2016 Fort et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 15 July 2016
                : 5 October 2016
                Funding
                Funded by: French National Research Agency (ANR)
                Funded by: COTE Cluster of Excellence
                Award ID: ANR-10-LABX-45
                This study was carried out with financial support from the French National Research Agency (ANR) in the frame of the Investments for the future Programme, within the COTE Cluster of Excellence (ANR-10-LABX-45). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Agricultural Science
                Ecology
                Microbiology
                Mycology
                Plant Science

                bioaerosols,dispersal,landscape,grapevine,forest,selection,edges,phyllosphere

                Comments

                Comment on this article