17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Contrasting phenotypic plasticity in the photoprotective strategies of the invasive species Carpobrotus edulis and the coexisting native species Crithmum maritimum.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photoprotective strategies vary greatly within the plant kingdom and reflect a plant's physiological status and capacity to cope with environment variations. The plasticity and intensity of these responses may determine plant success. Invasive species are reported to show increased vigor to displace native species. Describing the mechanisms that confer such vigor is essential to understanding the success of invasive species. We performed an experiment whereby two species were monitored: Carpobrotus edulis, an aggressive invasive species in the Mediterranean basin, and Crithmum maritimum, a coexisting native species in the Cap de Creus Natural Park (NE Spain). We analyzed their photoprotective responses to seasonal environmental dynamics by comparing the capacity of the invader to respond to the local environmental stresses throughout the year. Our study analyses ecophysiological markers and photoprotective strategies to gain an insight into the success of invaders. We found that both species showed completely different but effective photoprotective strategies: in summer, C. edulis took special advantage of the xanthophyll cycle, whereas the success of C. maritimum in summer stemmed from morphological changes and alterations on β-carotene content. Winter also presented differences between the species, as the native showed reduced Fv /Fm ratios. Our experimental design allowed us to introduce a new approach to compare phenotypic plasticity: the integrated phenotypic plasticity index (PPint ), defined as the maximum Euclidian distance between phenotypes, using a combination of different variables to describe them. This index revealed significantly greater phenotypic plasticity in the invasive species compared to the native species.

          Related collections

          Author and article information

          Journal
          Physiol Plant
          Physiologia plantarum
          Wiley-Blackwell
          1399-3054
          0031-9317
          Jun 2017
          : 160
          : 2
          Affiliations
          [1 ] Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain.
          Article
          10.1111/ppl.12542
          28058723
          d72c8811-8d1b-4271-b146-b6d5277c5612
          History

          Comments

          Comment on this article