16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Accelerating the discovery of materials for clean energy in the era of smart automation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references201

          • Record: found
          • Abstract: found
          • Article: not found

          Complex thermoelectric materials.

          Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Taking the Human Out of the Loop: A Review of Bayesian Optimization

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engineered doping of organic semiconductors for enhanced thermoelectric efficiency.

              Significant improvements to the thermoelectric figure of merit ZT have emerged in recent years, primarily due to the engineering of material composition and nanostructure in inorganic semiconductors (ISCs). However, many present high-ZT materials are based on low-abundance elements that pose challenges for scale-up, as they entail high material costs in addition to brittleness and difficulty in large-area deposition. Here we demonstrate a strategy to improve ZT in conductive polymers and other organic semiconductors (OSCs) for which the base elements are earth-abundant. By minimizing total dopant volume, we show that all three parameters constituting ZT vary in a manner so that ZT increases; this stands in sharp contrast to ISCs, for which these parameters have trade-offs. Reducing dopant volume is found to be as important as optimizing carrier concentration when maximizing ZT in OSCs. Implementing this strategy with the dopant poly(styrenesulphonate) in poly(3,4-ethylenedioxythiophene), we achieve ZT  =  0.42 at room temperature.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Materials
                Nat Rev Mater
                Springer Nature
                2058-8437
                April 26 2018
                Article
                10.1038/s41578-018-0005-z
                d72dc3c1-26cc-4605-a3ef-ffbe47b4bd4f
                © 2018

                http://www.springer.com/tdm


                Comments

                Comment on this article