33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TWEAK/Fn14 Activation Participates in Skin Inflammation

      review-article
      , ,
      Mediators of Inflammation
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumor necrosis factor- (TNF-) like weak inducer of apoptosis (TWEAK) participates in multiple biological activities via binding to its sole receptor—fibroblast growth factor-inducible 14 (Fn14). The TWEAK/Fn14 signaling pathway is activated in skin inflammation and modulates the inflammatory responses of keratinocytes by activating nuclear factor- κB signals and enhancing the production of several cytokines, including interleukins, monocyte chemotactic protein-1, RANTES (regulated on activation, normal T cell expressed and secreted), and interferon gamma-induced protein 10. Mild or transient TWEAK/Fn14 activation contributes to tissular repair and regeneration while excessive or persistent TWEAK/Fn14 signals may lead to severe inflammatory infiltration and tissue damage. TWEAK also regulates cell fate of keratinocytes, involving the function of Fn14-TNF receptor-associated factor-TNF receptor axis. By recruiting inflammatory cells, promoting cytokine production, and regulating cell fate, TWEAK/Fn14 activation plays a pivotal role in the pathogenesis of various skin disorders, such as psoriasis, atopic dermatitis, cutaneous vasculitis, human papillomavirus infection and related skin tumors, and cutaneous autoimmune diseases. Therefore, the TWEAK/Fn14 pathway may be a potential target for the development of novel therapeutics for skin inflammatory diseases.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor.

          Mutational analysis identified a C-terminal region of 78 amino acids within the cytoplasmic domain of the human 75 kDa tumor necrosis factor receptor (TNF-R2) that is required for signal transduction. This region was subsequently shown to mediate the interaction of cytoplasmic factors with TNF-R2. Two of these factors were isolated and molecularly cloned using biochemical purification and the yeast two-hybrid system. TNF receptor-associated factor 1 (TRAF1) and TRAF2 are the first two members of a novel protein family containing a novel C-terminal homology region, the TRAF domain. In addition, TRAF2 contains an N-terminal RING finger motif. TRAF1 and TRAF2 can form homo- and heterotypic dimers. Our analysis indicates that TRAF1 and TRAF2 are associated with the cytoplasmic domain of TNF-R2 in a heterodimeric complex in which TRAF2 contacts the receptor directly. TRAF1 interacts with TNF-R2 indirectly through heterodimer formation with TRAF2.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting.

            TWEAK is a multifunctional cytokine that controls many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis and inflammation. TWEAK acts by binding to Fn14, a highly inducible cell-surface receptor that is linked to several intracellular signalling pathways, including the nuclear factor-kappaB (NF-kappaB) pathway. The TWEAK-Fn14 axis normally regulates various physiological processes, in particular it seems to play an important, beneficial role in tissue repair following acute injury. Furthermore, recent studies have indicated that TWEAK-Fn14 axis signalling may contribute to cancer, chronic autoimmune diseases and acute ischaemic stroke. This Review provides an overview of TWEAK-Fn14 axis biology and summarizes the available data supporting the proposal that both TWEAK and Fn14 should be considered as potential targets for the development of novel therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Role of Apoptosis in disease

              Since the initial description of apoptosis, a number of different forms of cell death have been described. In this review we will focus on classic caspase-dependent apoptosis and its variations that contribute to diseases. Over fifty years of research have clarified molecular mechanisms involved in apoptotic signaling as well and shown that alterations of these pathways lead to human diseases. Indeed both reduced and increased apoptosis can result in pathology. More recently these findings have led to the development of therapeutic approaches based on regulation of apoptosis, some of which are in clinical trials or have entered medical practice.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi
                0962-9351
                1466-1861
                2017
                6 September 2017
                : 2017
                : 6746870
                Affiliations
                Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
                Author notes

                Academic Editor: Juarez A. S. Quaresma

                Author information
                http://orcid.org/0000-0002-3863-1065
                http://orcid.org/0000-0002-3493-7198
                Article
                10.1155/2017/6746870
                5606047
                29038621
                d7303f81-a3e4-4a1d-a4e4-94d919b523cd
                Copyright © 2017 Qilu Liu et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 May 2017
                : 1 August 2017
                Funding
                Funded by: Fundamental Research Funds for the Central Universities
                Award ID: 2015qngz01
                Funded by: National Natural Science Foundation of China
                Award ID: 81630081
                Award ID: 81472876
                Categories
                Review Article

                Immunology
                Immunology

                Comments

                Comment on this article