4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Is the effect of melatonin on vascular endothelial growth factor receptor-2 associated with angiogenesis in the rat ovary?

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVES

          Vascular endothelial growth factor (VEGF) and its receptors play important roles in angiogenesis. Melatonin plays an important role in gonadal development; thus, its effect on the reproductive system is evident. We investigated the influence of melatonin on the expression of VEGF, vascular endothelial growth factor receptor-1 (VEGFR1) and vascular endothelial growth factor receptor-2 (VEGFR2), as well as on changes in oxidative stress markers and follicle numbers in rat ovaries.

          METHODS

          For this purpose, 45 Wistar rats were separated into the following groups: Group 1, control; Group 2, vehicle; and Group 3, melatonin. Rats in Group 3 were treated with melatonin at 50 mg/kg/day for 30 days. The effects of melatonin on the expression of VEGF, VEGFR1 and VEGFR2 were established by immunohistochemistry analysis. The effects of melatonin on antioxidant enzyme activities were demonstrated by spectrophotometric analysis.

          RESULTS

          Based on immunohistochemistry analysis, VEGFR2 was predominantly localized to theca cells in the ovary. Our data indicate that melatonin treatment can significantly increase VEGF and VEGFR1 expression in the ovary ( p <0.05). Additionally, the number of degenerated follicles significantly decreased with melatonin treatment ( p <0.05). Melatonin administration also led to significant increases in antioxidant enzyme levels in the ovary.

          CONCLUSION

          Melatonin treatment exerts protective effects on follicles against increased lipid peroxidation through modulating tissue antioxidant enzyme levels. These effects may be related to angiogenesis and antioxidant activities.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Melatonin: a multitasking molecule.

          Melatonin (N-acetyl-5-methoxytryptamine) has revealed itself as an ubiquitously distributed and functionally diverse molecule. The mechanisms that control its synthesis within the pineal gland have been well characterized and the retinal and biological clock processes that modulate the circadian production of melatonin in the pineal gland are rapidly being unravelled. A feature that characterizes melatonin is the variety of mechanisms it employs to modulate the physiology and molecular biology of cells. While many of these actions are mediated by well-characterized, G-protein coupled melatonin receptors in cellular membranes, other actions of the indole seem to involve its interaction with orphan nuclear receptors and with molecules, for example calmodulin, in the cytosol. Additionally, by virtue of its ability to detoxify free radicals and related oxygen derivatives, melatonin influences the molecular physiology of cells via receptor-independent means. These uncommonly complex processes often make it difficult to determine specifically how melatonin functions to exert its obvious actions. What is apparent, however, is that the actions of melatonin contribute to improved cellular and organismal physiology. In view of this and its virtual absence of toxicity, melatonin may well find applications in both human and veterinary medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Effect of Melatonin on Tumor Growth and Angiogenesis in Xenograft Model of Breast Cancer

            As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p 0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melatonin suppresses tumor angiogenesis by inhibiting HIF-1alpha stabilization under hypoxia.

              Angiogenesis is an important mediator of tumor progression. As tumors expand, diffusion distances from the existing vascular supply increases, resulting in hypoxia in the cancer cells. Sustained expansion of a tumor mass requires new blood vessel formation to provide rapidly proliferating tumor cells with an adequate supply of oxygen and nutrients. The key regulator of hypoxia-induced angiogenesis is the transcription factor known as hypoxia-inducible factor (HIF)-1. HIF-1alpha is stabilized by hypoxia-induced reactive oxygen species (ROS) and enhances the expression of several types of hypoxic genes, including that of the angiogenic activator known as vascular endothelial cell growth factor (VEGF). In this study, we found that melatonin, a small lipophilic molecule secreted primarily by the pineal gland, destabilizes hypoxia-induced HIF-1alpha protein levels in the HCT116 human colon cancer cell line. This destabilization of HIF-1alpha resulted from the antioxidant activity of melatonin against ROS induced by hypoxia. Moreover, under hypoxia, melatonin suppressed HIF-1 transcriptional activity, leading to a decrease in VEGF expression. Melatonin also blocked in vitro tube formation and invasion and migration of human umbilical vein endothelial cells induced by hypoxia-stimulated conditioned media of HCT116 cells. These findings suggest that melatonin could play a pivotal role in tumor suppression via inhibition of HIF-1-mediated angiogenesis.
                Bookmark

                Author and article information

                Journal
                Clinics (Sao Paulo)
                Clinics (Sao Paulo)
                clin
                Clinics
                Faculdade de Medicina / USP (Brasil )
                1807-5932
                1980-5322
                27 February 2019
                2019
                : 74
                : e658
                Affiliations
                [I ]Harran University, Faculty of Medicine, Department of Anatomy, Şanlıurfa, Turkey.
                [II ]Akdeniz University, Faculty of Medicine, Department of Histology, Antalya, Turkey.
                [III ]Kanuni Sultan Süleyman Hospital, Department of Perinatology, Istanbul, Turkey.
                Author notes
                [* ] Corresponding author. E-mail: ya_behram@ 123456hotmail.com

                AUTHOR CONTRIBUTIONS

                Kandemir YB designed the experiments and methodology, performed the melatonin treatment and biochemical analyses, analysed the data, and carried out the writing and editing of the manuscript. Konuk E contributed to the writing of the manuscript and performed the immunohistochemistry and immunofluorescence analyses. Katırcı E contributed to the immunohistochemistry and immunofluorescence analyses as well as to the editing of the manuscript. Xxx F contributed to the immunohistochemistry and immunofluorescence analyses. Behram M carried out the critical revision of the article.

                No potential conflict of interest was reported.

                Author information
                http://orcid.org/0000-0002-6490-9155
                Article
                10.6061/clinics/2019/e658
                6438131
                30864638
                d73a598a-933a-45ca-96ba-5e4a63e4a0f7

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 June 2018
                : 19 December 2018
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 48
                Categories
                Original Article

                Medicine
                melatonin,ovary,vegf,vegfr1,vegfr2
                Medicine
                melatonin, ovary, vegf, vegfr1, vegfr2

                Comments

                Comment on this article