42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Revealing Molecular Mechanisms by Integrating High-Dimensional Functional Screens with Protein Interaction Data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Functional genomics screens using multi-parametric assays are powerful approaches for identifying genes involved in particular cellular processes. However, they suffer from problems like noise, and often provide little insight into molecular mechanisms. A bottleneck for addressing these issues is the lack of computational methods for the systematic integration of multi-parametric phenotypic datasets with molecular interactions. Here, we present Integrative Multi Profile Analysis of Cellular Traits (IMPACT). The main goal of IMPACT is to identify the most consistent phenotypic profile among interacting genes. This approach utilizes two types of external information: sets of related genes (IMPACT-sets) and network information (IMPACT-modules). Based on the notion that interacting genes are more likely to be involved in similar functions than non-interacting genes, this data is used as a prior to inform the filtering of phenotypic profiles that are similar among interacting genes. IMPACT-sets selects the most frequent profile among a set of related genes. IMPACT-modules identifies sub-networks containing genes with similar phenotype profiles. The statistical significance of these selections is subsequently quantified via permutations of the data. IMPACT (1) handles multiple profiles per gene, (2) rescues genes with weak phenotypes and (3) accounts for multiple biases e.g. caused by the network topology. Application to a genome-wide RNAi screen on endocytosis showed that IMPACT improved the recovery of known endocytosis-related genes, decreased off-target effects, and detected consistent phenotypes. Those findings were confirmed by rescreening 468 genes. Additionally we validated an unexpected influence of the IGF-receptor on EGF-endocytosis. IMPACT facilitates the selection of high-quality phenotypic profiles using different types of independent information, thereby supporting the molecular interpretation of functional screens.

          Author Summary

          Genome-scale functional genomics screens are important tools for investigating the function of genes. Technological progress allows for the simultaneous measurement of multiple parameters quantifying the response of cells to gene perturbations such as RNA interference. Such multi-dimensional screens provide rich data, but there is a lack of computational methods for interpreting these complex measurements. We have developed two computational methods that combine the data from multi-dimensional functional genomics screens with protein interaction information. These methods search for phenotype patterns that are consistent among interacting genes. Thereby, we could reduce the noise in the data and facilitate the mechanistic interpretation of the findings. The performance of the methods was demonstrated through application to a genome-wide screen studying endocytosis. Subsequent experimental validation demonstrated the improved detection of phenotypic profiles through the use of protein interaction data. Our analysis revealed unexpected roles of specific network modules and protein complexes with respect to endocytosis. Detailed follow-up experiments investigating the dynamics of endocytosis uncovered crosstalk between the cancer-related EGF and IGF pathways with so far unknown effects on endocytosis and cargo trafficking.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The meaning and use of the area under a receiver operating characteristic (ROC) curve.

          A representation and interpretation of the area under a receiver operating characteristic (ROC) curve obtained by the "rating" method, or by mathematical predictions based on patient characteristics, is presented. It is shown that in such a setting the area represents the probability that a randomly chosen diseased subject is (correctly) rated or ranked with greater suspicion than a randomly chosen non-diseased subject. Moreover, this probability of a correct ranking is the same quantity that is estimated by the already well-studied nonparametric Wilcoxon statistic. These two relationships are exploited to (a) provide rapid closed-form expressions for the approximate magnitude of the sampling variability, i.e., standard error that one uses to accompany the area under a smoothed ROC curve, (b) guide in determining the size of the sample required to provide a sufficiently reliable estimate of this area, and (c) determine how large sample sizes should be to ensure that one can statistically detect differences in the accuracy of diagnostic techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Network-based classification of breast cancer metastasis

            Mapping the pathways that give rise to metastasis is one of the key challenges of breast cancer research. Recently, several large-scale studies have shed light on this problem through analysis of gene expression profiles to identify markers correlated with metastasis. Here, we apply a protein-network-based approach that identifies markers not as individual genes but as subnetworks extracted from protein interaction databases. The resulting subnetworks provide novel hypotheses for pathways involved in tumor progression. Although genes with known breast cancer mutations are typically not detected through analysis of differential expression, they play a central role in the protein network by interconnecting many differentially expressed genes. We find that the subnetwork markers are more reproducible than individual marker genes selected without network information, and that they achieve higher accuracy in the classification of metastatic versus non-metastatic tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endocytosis and signalling: intertwining molecular networks.

              Cell signalling and endocytic membrane trafficking have traditionally been viewed as distinct processes. Although our present understanding is incomplete and there are still great controversies, it is now recognized that these processes are intimately and bidirectionally linked in animal cells. Indeed, many recent examples illustrate how endocytosis regulates receptor signalling (including signalling from receptor tyrosine kinases and G protein-coupled receptors) and, conversely, how signalling regulates the endocytic pathway. The mechanistic and functional principles that underlie the relationship between signalling and endocytosis in cell biology are becoming increasingly evident across many systems.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                September 2014
                4 September 2014
                : 10
                : 9
                : e1003801
                Affiliations
                [1 ]Biotechnology Center, TU Dresden, Dresden, Germany
                [2 ]Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
                [3 ]Belozersky Institute of Physico-Chemical Biology & Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
                [4 ]Center for Regenerative Therapy, Dresden, Germany
                [5 ]University of Cologne, Cologne, Germany
                University of Toronto, Canada
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MZ CC YK. Performed the experiments: CC TG. Analyzed the data: AS GM YK. Wrote the paper: AS GM AB MZ CC. Designed the algorithms and software used in analysis: AS GM AB.

                Article
                PCOMPBIOL-D-13-02051
                10.1371/journal.pcbi.1003801
                4154648
                25188415
                d73f79cd-b8a4-422d-aea2-0912119776e9
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 November 2013
                : 25 June 2014
                Page count
                Pages: 20
                Funding
                This work has been supported by the Klaus-Tschira-Foundation http://www.klaus-tschira-stiftung.de/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Molecular Cell Biology
                Signal Transduction
                Genetics
                Genomics
                Functional Genomics
                Computational Biology
                Systems Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article