21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      What Causes Stuttering?

      research-article
      ,
      PLoS Biology
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mystery of a sometimes debilitating speech disorder is examined by cognitive neuroscientists

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          Sex differences in human brain asymmetry: a critical survey

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A PET study of the neural systems of stuttering.

            The cause of stuttering is unknown. Failure to develop left-hemispheric dominance for speech is a long-standing theory although others implicated the motor system more broadly, often postulating hyperactivity of the right (language nondominant) cerebral hemisphere. As knowledge of motor circuitry has advanced, theories of stuttering have become more anatomically specific, postulating hyperactivity of premotor cortex, either directly or through connectivity with the thalamus and basal ganglia. Alternative theories target the auditory and speech production systems. By contrasting stuttering with fluent speech using positron emission tomography combined with chorus reading to induce fluency, we found support for each of these hypotheses. Stuttering induced widespread overactivations of the motor system in both cerebrum and cerebellum, with right cerebral dominance. Stuttered reading lacked left-lateralized activations of the auditory system, which are thought to support the self-monitoring of speech, and selectively deactivated a frontal-temporal system implicated in speech production. Induced fluency decreased or eliminated the overactivity in most motor areas, and largely reversed the auditory-system underactivations and the deactivation of the speech production system. Thus stuttering is a disorder affecting the multiple neural systems used for speaking.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cerebral cortical representation of automatic and volitional swallowing in humans.

              Although the cerebral cortex has been implicated in the control of swallowing, the functional organization of the human cortical swallowing representation has not been fully documented. Therefore, the present study determined the cortical representation of swallowing in fourteen healthy right-handed female subjects using single-event-related functional magnetic resonance imaging (fMRI). Subjects were scanned during three swallowing activation tasks: a naïve saliva swallow, a voluntary saliva swallow, and a water bolus swallow. Swallow-related laryngeal movement was recorded simultaneously from the output of a bellows positioned over the thyroid cartilage. Statistical maps were generated by computing the difference between the magnitude of the voxel time course during 1) a single swallowing trial and 2) the corresponding control period. Automatic and volitional swallowing produced activation within several common cortical regions, the most prominent and consistent being located within the lateral precentral gyrus, lateral postcentral gyrus, and right insula. Activation foci within the superior temporal gyrus, middle and inferior frontal gyri, and frontal operculum also were identified for all swallowing tasks. In contrast, activation of the caudal anterior cingulate cortex was significantly more likely in association with the voluntary saliva swallow and water bolus swallow than the naïve swallow. These findings support the view that, in addition to known brain stem areas, human swallowing is represented within a number of spatially and functionally distinct cortical loci which may participate differentially in the regulation of swallowing. Activation of the insula was significantly lateralized to the right hemisphere for the voluntary saliva swallow, suggesting a functional hemispheric dominance of the insula for the processing of swallowing.
                Bookmark

                Author and article information

                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                February 2004
                17 February 2004
                : 2
                : 2
                : e46
                Article
                10.1371/journal.pbio.0020046
                340949
                14966540
                d7491016-eca0-44e7-a2f9-efb958c7264a
                Copyright: © 2004 Büchel and Sommer. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
                History
                Categories
                Unsolved Mystery
                Neuroscience
                Homo (Human)

                Life sciences
                Life sciences

                Comments

                Comment on this article