37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phosphorylation of myosin regulatory light chain controls myosin head conformation in cardiac muscle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effect of phosphorylation on the conformation of the regulatory light chain (cRLC) region of myosin in ventricular trabeculae from rat heart was determined by polarized fluorescence from thiophosphorylated cRLCs labelled with bifunctional sulforhodamine (BSR). Less than 5% of cRLCs were endogenously phosphorylated in this preparation, and similarly low values of basal cRLC phosphorylation were measured in fresh intact ventricle from both rat and mouse hearts. BSR-labelled cRLCs were thiophosphorylated by a recombinant fragment of human cardiac myosin light chain kinase, which was shown to phosphorylate cRLCs specifically at serine 15 in a calcium- and calmodulin-dependent manner, both in vitro and in situ. The BSR-cRLCs were exchanged into demembranated trabeculae, and polarized fluorescence intensities measured for each BSR-cRLC in relaxation, active isometric contraction and rigor were combined with RLC crystal structures to calculate the orientation distribution of the C-lobe of the cRLC in each state. Only two of the four C-lobe orientation populations seen during relaxation and active isometric contraction in the unphosphorylated state were present after cRLC phosphorylation. Thus cRLC phosphorylation alters the equilibrium between defined conformations of the cRLC regions of the myosin heads, rather than simply disordering the heads as assumed previously. cRLC phosphorylation also changes the orientation of the cRLC C-lobe in rigor conditions, showing that the orientation of this part of the myosin head is determined by its interaction with the thick filament even when the head is strongly bound to actin. These results suggest that cRLC phosphorylation controls the contractility of the heart by modulating the interaction of the cRLC region of the myosin heads with the thick filament backbone.

          Highlights

          • The orientation of the phosphorylated cRLC was measured by polarized fluorescence.

          • Phosphorylated myosin heads are not disordered on the level of the cRLC region.

          • cRLC phosphorylation induces a new conformational state of myosin.

          • cRLC phosphorylation controls contractility at the myosin head–backbone interface.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse

          PhosphoSitePlus (http://www.phosphosite.org) is an open, comprehensive, manually curated and interactive resource for studying experimentally observed post-translational modifications, primarily of human and mouse proteins. It encompasses 1 30 000 non-redundant modification sites, primarily phosphorylation, ubiquitinylation and acetylation. The interface is designed for clarity and ease of navigation. From the home page, users can launch simple or complex searches and browse high-throughput data sets by disease, tissue or cell line. Searches can be restricted by specific treatments, protein types, domains, cellular components, disease, cell types, cell lines, tissue and sequences or motifs. A few clicks of the mouse will take users to substrate pages or protein pages with sites, sequences, domain diagrams and molecular visualization of side-chains known to be modified; to site pages with information about how the modified site relates to the functions of specific proteins and cellular processes and to curated information pages summarizing the details from one record. PyMOL and Chimera scripts that colorize reactive groups on residues that are modified can be downloaded. Features designed to facilitate proteomic analyses include downloads of modification sites, kinase–substrate data sets, sequence logo generators, a Cytoscape plugin and BioPAX download to enable pathway visualization of the kinase–substrate interactions in PhosphoSitePlus®.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphate-binding tag, a new tool to visualize phosphorylated proteins.

            We introduce two methods for the visualization of phosphorylated proteins using alkoxide-bridged dinuclear metal (i.e. Zn(2+) or Mn(2+)) complexes as novel phosphate-binding tag (Phos-tag) molecules. Both Zn(2+)- and Mn(2+)-Phos-tag molecules preferentially capture phosphomonoester dianions bound to Ser, Thr, and Tyr residues. One method is based on an ECL system using biotin-pendant Zn(2+)-Phos-tag and horseradish peroxidase-conjugated streptavidin. We demonstrate the electroblotting analyses of protein phosphorylation status by the phosphate-selective ECL signals. Another method is based on the mobility shift of phosphorylated proteins in SDS-PAGE with polyacrylamide-bound Mn(2+)-Phos-tag. Phosphorylated proteins in the gel are visualized as slower migration bands compared with corresponding dephosphorylated proteins. We demonstrate the kinase and phosphatase assays by phosphate affinity electrophoresis (Mn(2+)-Phos-tag SDS-PAGE).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The mechanism of muscular contraction.

              H Huxley (1969)
                Bookmark

                Author and article information

                Contributors
                Journal
                J Mol Cell Cardiol
                J. Mol. Cell. Cardiol
                Journal of Molecular and Cellular Cardiology
                Academic Press
                0022-2828
                1095-8584
                1 August 2015
                August 2015
                : 85
                : 199-206
                Affiliations
                Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
                Author notes
                [* ]Corresponding author. thomas.kampourakis@ 123456kcl.ac.uk
                Article
                S0022-2828(15)00188-1
                10.1016/j.yjmcc.2015.06.002
                4535163
                26057075
                d753561a-fc68-494f-868d-d6c966c6ad48
                © 2015 The Authors. Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 11 April 2015
                : 18 May 2015
                : 3 June 2015
                Categories
                Original Article

                Cardiovascular Medicine
                crlc, cardiac regulatory light chain,bsr, bifunctional sulforhodamine,cmybp-c, cardiac myosin binding protein c,cmlck, cardiac myosin light chain kinase,hmm, heavy meromyosin,elc, essential light chain,lcd, light chain domain of myosin,me, maximum entropy,myosin,cardiac muscle regulation,myosin regulatory light chain,polarized fluorescence,regulatory light chain phosphorylation

                Comments

                Comment on this article