57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The obligate intracellular parasite Toxoplasma gondii establishes a life-long chronic infection within any warm-blooded host. After ingestion of an encysted parasite, T. gondii disseminates throughout the body as a rapidly replicating form during acute infection. Over time and after stimulation of the host immune response, T. gondii differentiates into a slow growing, cyst form that is the hallmark of chronic infection. Global transcriptome analysis of both host and parasite during the establishment of chronic T. gondii infection has not yet been performed. Here, we conducted a dual RNA-seq analysis of T. gondii and its rodent host to better understand host and parasite responses during acute and chronic infection.

          Results

          We obtained nearly one billion paired-end RNA sequences from the forebrains of uninfected, acutely and chronically infected mice, then aligned them to the genomic reference files of both T. gondii and Mus musculus. Gene ontology (GO) analysis of the 100 most highly expressed T. gondii genes showed less than half were shared between acute and chronic infection. The majority of the highly expressed genes common in both acute and chronic infection were involved in transcription and translation, underscoring that parasites in both stages are actively synthesizing proteins. Similarly, most of the T. gondii genes highly expressed during chronic infection were involved in metabolic processes, again highlighting the activity of the cyst stage at 28 days post-infection. Comparative analyses of host genes using uninfected forebrain revealed over twice as many immune regulatory genes were more abundant during chronic infection compared to acute. This demonstrates the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription.

          Conclusions

          RNA-seq is a valuable tool to simultaneously analyze host and microbe transcriptomes. Our data shows that T. gondii is metabolically active and synthesizing proteins at 28 days post-infection and that a distinct subset of host genes associated with the immune response are more abundant specifically during chronic infection. These data suggest host and pathogen interplay is still present during chronic infection and provides novel T. gondii targets for future drug and vaccine development.

          Electronic supplementary material

          The online version of this article (doi:10.1186/1471-2164-15-806) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences

          Increased reliance on computational approaches in the life sciences has revealed grave concerns about how accessible and reproducible computation-reliant results truly are. Galaxy http://usegalaxy.org, an open web-based platform for genomic research, addresses these problems. Galaxy automatically tracks and manages data provenance and provides support for capturing the context and intent of computational methods. Galaxy Pages are interactive, web-based documents that provide users with a medium to communicate a complete computational analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toxoplasmic encephalitis in AIDS.

            Involvement of the central nervous system (CNS) is common in patients with advanced disease due to human immunodeficiency virus (HIV). Symptoms range from lethargy and apathy to coma, incoordination and ataxia to hemiparesis, loss of memory to severe dementia, and focal to major motor seizures. Involvement may be closely associated with HIV infection per se, as in the AIDS dementia complex, but is frequently caused by opportunistic pathogens such as Toxoplasma gondii and Cryptococcus neoformans or malignancies such as primary lymphoma of the CNS. The clinical presentations of attendant and direct CNS involvement are remarkably non-specific and overlapping, yet a correct diagnosis is critical to successful intervention. Toxoplasmic encephalitis is one of the most common and most treatable causes of AIDS-associated pathology of the CNS. A great deal has been learned in the last 10 years about its unique presentation in the HIV-infected patient with advanced disease. Drs. Benjamin J. Luft of the State University of New York at Stony Brook and Jack S. Remington of the Stanford University School of Medicine and Palo Alto Medical Foundation's Research Institute have studied T. gondii for many years and are two of the leading experts in the field. This commentary comprises an update of their initial review (J Infect Dis 1988;157:1-6) and a presentation of the current approaches to diagnosing and managing toxoplasmic encephalitis in HIV-infected patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma

              Calcium-regulated exocytosis is a ubiquitous process in eukaryotes, whereby secretory vesicles fuse with the plasma membrane and release their contents in response to an intracellular calcium surge1. This process regulates diverse cellular functions like plasma membrane repair in plants and animals2,3, discharge of defensive spikes in Paramecium 4, and secretion of insulin from pancreatic cells, immune modulators from lymphocytes, and chemical transmitters from neurons5. In animal cells, serine/threonine kinases including PKA, PKC and CaM-kinases have been implicated in calcium-signal transduction leading to regulated secretion1,6,7. Although plants and protozoa also regulate secretion via intracellular calcium, the means by which these signals are relayed have not been elucidated. Here we demonstrate that the Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) is an essential regulator of calcium-dependent exocytosis in this opportunistic human pathogen. Conditional suppression of TgCDPK1 revealed that it controls calcium-dependent secretion of specialized organelles called micronemes, resulting in a block of essential phenotypes including parasite motility, host-cell invasion, and egress. This phenotype was recapitulated using a chemical biology approach, wherein pyrazolopyrimidine-derived compounds specifically inhibited TgCDPK1 and disrupted the parasite life cycle at stages dependent on microneme secretion. Inhibition was specific to TgCDPK1, since expression of a resistant kinase mutant reversed sensitivity to the inhibitor. TgCDPK1 is conserved among apicomplexans and belongs to a family of kinases shared with plants and ciliates8, suggesting that related CDPKs may play a role in calcium-regulated secretion in other organisms. Since this kinase family is absent from mammalian hosts, it represents a validated target that may be exploitable for chemotherapy against T. gondii and related apicomplexans.
                Bookmark

                Author and article information

                Contributors
                kjpittman@wisc.edu
                mtaliota@wisc.edu
                ljknoll@wisc.edu
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                20 September 2014
                20 September 2014
                2014
                : 15
                : 1
                : 806
                Affiliations
                [ ]Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706 USA
                [ ]Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706 USA
                Article
                6483
                10.1186/1471-2164-15-806
                4177681
                25240600
                d75e75b1-eaf5-42ea-afe6-361bda998bb1
                © Pittman et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 February 2014
                : 17 September 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Genetics
                toxoplasma,rna-seq,transcriptome,acute infection,chronic infection,forebrain,metabolism,immune response

                Comments

                Comment on this article