9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Expression of Kidney and Liver Bilitranslocase in Response to Acute Biliary Obstruction

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aim: It has been recently demonstrated that acute obstructive jaundice is associated with modifications in the renal expression and function of organic anion transporters such as Oat1, Oat3, Oatp1 and Mrp2. This study examined the expression and function of bilitranslocase in liver and kidney from rats with bile duct ligation (BDL). Methods: Bilitranslocase expression was evaluated in renal homogenates (H), renal basolateral plasma membranes (KBLM) and liver plasma membranes (LPM) by immunoblotting. Bilitranslocase function was studied by measuring the kinetic parameters of electrogenic bromosulfophthalein (BSP) uptake in KBLM and LPM by a spectrophotometric technique. Results: An increased abundance of bilitranslocase in KBLM without modifications in renal H and in LPM from BDL rats was observed compared with Sham rats. BDL rats showed a higher V<sub>max</sub> for BSP uptake in KBLM. No differences between groups were observed for Michaelis-Menten parameters in LPM. Conclusion: The higher renal expression and function of bilitranslocase in renal basolateral membranes from rats with obstructive cholestasis might also contribute to the dramatic increase in BSP renal excretion observed in this experimental model. This would be another compensation mechanism to overcome the hepatic dysfunction in the elimination of organic anions.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Bioavailability of flavonoids: a review of their membrane transport and the function of bilitranslocase in animal and plant organisms.

          Fruits and vegetables are rich in flavonoids, and ample epidemiological data show that diets rich in fruits and vegetables confer protection against cardiovascular, neurodegenerative and inflammatory diseases, and cancer. However, flavonoid bioavailability is reportedly very low in mammals and the molecular mechanisms of their action are still poorly known. This review focuses on membrane transport of flavonoids, a critical determinant of their bioavailability. Cellular influx and efflux transporters are reviewed for their involvement in the absorption of flavonoids from the gastro-intestinal tract and their subsequent tissue distribution. A focus on the mammalian bilirubin transporter bilitranslocase (TCDB 2.A.65.1.1) provides further insight into flavonoid bioavailability and its relationship with plasma bilirubin (an endogenous antioxidant). The general function of bilitranslocase as a flavonoid membrane transporter is further demonstrated by the occurrence of a plant homologue in organs (petals, berries) where flavonoid biosynthesis is most active. Bilitranslocase appears associated with sub-cellular membrane compartments and operates as a flavonoid membrane transporter.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular physiology of renal organic anion transporters.

            Recent advances in molecular biology have identified three organic anion transporter families: the organic anion transporter (OAT) family encoded by SLC22A, the organic anion transporting peptide (OATP) family encoded by SLC21A (SLCO), and the multidrug resistance-associated protein (MRP) family encoded by ABCC. These families play critical roles in the transepithelial transport of organic anions in the kidneys as well as in other tissues such as the liver and brain. Among these families, the OAT family plays the central role in renal organic anion transport. Knowledge of these three families at the molecular level, such as substrate selectivity, tissue distribution, and gene localization, is rapidly increasing. In this review, we will give an overview of molecular information on renal organic anion transporters and describe recent topics such as the regulatory mechanisms and molecular physiology of urate transport. We will also discuss the physiological roles of each organic anion transporter in the light of the transepithelial transport of organic anions in the kidneys.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Uptake of grape anthocyanins into the rat kidney and the involvement of bilitranslocase.

              Anthocyanins are among the most common flavonoids in the human diet. In spite of their very low bioavailability, anthocyanins are indicated as active in preventing the progress of cardiovascular and neurodegenerative diseases, obesity, inflammation, and cancer. Any piece of knowledge concerning absorption, tissue distribution, metabolism, and excretion of dietary anthocyanins is expected to help understanding the apparent paradox between their low concentrations in cells and their bioactivity. The aim of this work was to investigate the renal uptake of dietary anthocyanins and the underlying molecular mechanism. A solution containing anthocyanins extracted from grape (Vitis vinifera) was introduced into the isolated stomach of anesthetized rats; after both 10 and 30 min, plasma, liver, and kidney were analyzed for their anthocyanin contents. While anthocyanins in the liver were at apparent equilibrium with plasma both after 10 and 30 min, kidney anthocyanins were 3- and 2.3-fold higher than in plasma, after 10 and 30 min, respectively. Since the transport activity of the bilitranslocase in kidney basolateral membrane vesicles was competitively inhibited by malvidin 3-glucoside (K(i) = 4.8 +/- 0.2 microM), the anthocyanin uptake from blood into kidney tubular cells is likely to be mediated by the kidney isoform of this organic anion membrane transporter.
                Bookmark

                Author and article information

                Journal
                NEP
                Nephron Physiol
                10.1159/issn.1660-2137
                Nephron Physiology
                S. Karger AG
                1660-2137
                2010
                April 2010
                21 January 2010
                : 114
                : 4
                : p35-p40
                Affiliations
                aFarmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina; bDepartment of Life Sciences, University of Trieste, Trieste, Italy
                Article
                276588 Nephron Physiol 2010;114:p35–p40
                10.1159/000276588
                20110735
                d761f7c3-0f10-4612-bbd9-5877f315dc47
                © 2010 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 30 June 2009
                : 22 September 2009
                Page count
                Figures: 2, Tables: 2, References: 27, Pages: 1
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Cholestasis,Bilitranslocase,Acute jaundice,Bile duct obstruction,Organic anion transporters

                Comments

                Comment on this article