14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Corneal Basement Membranes and Stromal Fibrosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The purpose of this review was to provide detailed insights into the pathophysiology of myofibroblast-mediated fibrosis (scarring or late haze) after corneal injury, surgery, or infection.

          Method

          Literature review.

          Results

          The epithelium and epithelial basement membrane (EBM) and/or endothelium and Descemet's basement membrane (BM) are commonly disrupted after corneal injuries, surgeries, and infections. Regeneration of these critical regulatory structures relies on the coordinated production of BM components, including laminins, nidogens, perlecan, and collagen type IV by epithelial, endothelial, and keratocyte cells. Whether a cornea, or an area in the cornea, heals with transparency or fibrosis may be determined by whether there is injury to one or both corneal basement membranes (EBM and/or Descemet's BM) and delayed or defective regeneration or replacement of the BM. These opaque myofibroblasts, and the disordered extracellular matrix these cells produce, persist in the stroma until the EBM and/or Descemet's BM is regenerated or replaced.

          Conclusions

          Corneal stromal fibrosis (also termed “stromal scarring” or “late haze”) occurs as a consequence of BM injury and defective regeneration in both the anterior (EBM) and posterior (Descemet's BM) cornea. The resolution of fibrosis and return of stromal transparency depends on reestablished BM structure and function. It is hypothesized that defective regeneration of the EBM or Descemet's BM allows key profibrotic growth factors, including transforming growth factor beta-1 (TGF-β1) and TGF-β2, to penetrate the stroma at sustained levels necessary to drive the development and maintenance of mature opacity-producing myofibroblasts from myofibroblast precursors cells, and studies suggest that perlecan and collagen type IV are the critical components in EBM and Descemet's BM that bind TGF-β1, TGF-β2, platelet-derived growth factor, and possibly other growth factors, and regulate their bioavailability and function during homeostasis and corneal wound healing.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Laminins in basement membrane assembly

          The heterotrimeric laminins are a defining component of all basement membranes and self-assemble into a cell-associated network. The three short arms of the cross-shaped laminin molecule form the network nodes, with a strict requirement for one α, one β and one γ arm. The globular domain at the end of the long arm binds to cellular receptors, including integrins, α-dystroglycan, heparan sulfates and sulfated glycolipids. Collateral anchorage of the laminin network is provided by the proteoglycans perlecan and agrin. A second network is then formed by type IV collagen, which interacts with the laminin network through the heparan sulfate chains of perlecan and agrin and additional linkage by nidogen. This maturation of basement membranes becomes essential at later stages of embryo development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The corneal fibrosis response to epithelial-stromal injury.

            The corneal wound healing response, including the development of stromal opacity in some eyes, is a process that often leads to scarring that occurs after injury, surgery or infection to the cornea. Immediately after epithelial and stromal injury, a complex sequence of processes contributes to wound repair and regeneration of normal corneal structure and function. In some corneas, however, often depending on the type and extent of injury, the response may also lead to the development of mature vimentin+ α-smooth muscle actin+ desmin+ myofibroblasts. Myofibroblasts are specialized fibroblastic cells generated in the cornea from keratocyte-derived or bone marrow-derived precursor cells. The disorganized extracellular matrix components secreted by myofibroblasts, in addition to decreased expression of corneal crystallins in these cells, are central biological processes that result in corneal stromal fibrosis associated with opacity or "haze". Several factors are associated with myofibroblast generation and haze development after PRK surgery in rabbits, a reproducible model of scarring, including the amount of tissue ablated, which may relate to the extent of keratocyte apoptosis in the early response to injury, irregularity of stromal surface after surgery, and changes in corneal stromal proteoglycans, but normal regeneration of the epithelial basement membrane (EBM) appears to be a critical factor determining whether a cornea heals with relative transparency or vision-limiting stromal opacity. Structural and functional abnormalities of the regenerated EBM facilitate prolonged entry of epithelium-derived growth factors such as transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF) into the stroma that both drive development of mature myofibroblasts from precursor cells and lead to persistence of the cells in the anterior stroma. A major discovery that has contributed to our understanding of haze development is that keratocytes and corneal fibroblasts produce critical EBM components, such as nidogen-1, nidogen-2 and perlecan, that are essential for complete regeneration of a normal EBM once laminin secreted by epithelial cells self-polymerizes into a nascent EBM. Mature myofibroblasts that become established in the anterior stroma are a barrier to keratocyte/corneal fibroblast contributions to the nascent EBM. These myofibroblasts, and the opacity they produce, often persist for months or years after the injury. Transparency is subsequently restored when the EBM is completely regenerated, myofibroblasts are deprived of TGFβ and undergo apoptosis, and the keratocytes re-occupy the anterior stroma and reabsorb disordered extracellular matrix. The aim of this review is to highlight factors involved in the generation of stromal haze and its subsequent removal.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The corneal epithelial basement membrane: structure, function, and disease.

              The corneal epithelial basement membrane (BM) is positioned between basal epithelial cells and the stroma. This highly specialized extracellular matrix functions not only to anchor epithelial cells to the stroma and provide scaffolding during embryonic development but also during migration, differentiation, and maintenance of the differentiated epithelial phenotype. Basement membranes are composed of a diverse assemblage of extracellular molecules, some of which are likely specific to the tissue where they function; but in general they are composed of four primary components--collagens, laminins, heparan sulfate proteoglycans, and nidogens--in addition to other components such as thrombospondin-1, matrilin-2, and matrilin-4 and even fibronectin in some BM. Many studies have focused on characterizing BM due to their potential roles in normal tissue function and disease, and these structures have been well characterized in many tissues. Comparatively few studies, however, have focused on the function of the epithelial BM in corneal physiology. Since the normal corneal stroma is avascular and has relatively low keratocyte density, it is expected that the corneal BM would be different from the BM in other tissues. One function that appears critical in homeostasis and wound healing is the barrier function to penetration of cytokines from the epithelium to stroma (such as transforming growth factor β-1), and possibly from stroma to epithelium (such as keratinocyte growth factor). The corneal epithelial BM is also involved in many inherited and acquired corneal diseases. This review examines this structure in detail and discusses the importance of corneal epithelial BM in homeostasis, wound healing, and disease.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                Invest Ophthalmol Vis Sci
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                August 2018
                : 59
                : 10
                : 4044-4053
                Affiliations
                [1 ]The Cole Eye Institute, The Cleveland Clinic, Cleveland, Ohio, United States
                [2 ]Department of Ophthalmology at University of Sao Paulo, Sao Paulo, Brazil
                [3 ]Department of Ophthalmology at Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
                Author notes
                Correspondence: Steven E. Wilson, Cole Eye Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; wilsons4@ 123456ccf.org .
                Article
                iovs-59-10-11 IOVS-18-24428R1
                10.1167/iovs.18-24428
                6088801
                30098200
                d76b238a-e6eb-480a-a14f-fdc89cb1c452
                Copyright 2018 The Authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 25 March 2018
                : 31 May 2018
                Categories
                Review

                epithelial basement membrane,scarring,myofibroblasts,descemet's membrane,transforming growth factor beta

                Comments

                Comment on this article