9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure of preantral follicles, oxidative status and developmental competence of in vitro matured oocytes after ovary storage at 4 °C in the domestic cat model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Storage conditions during transportation of explanted ovaries are a critical step in setting up fertility preservation protocols in both animal and human fields. Here, we evaluated the effects of ovary storage at 4 °C on the preservation of preantral follicles and oocytes retrieved from antral follicles using the domestic cat as model.

          Methods

          Ovaries were harvested from fifty-five healthy domestic queens during ovariectomy and stored at 4 °C for 0 (control), 24, 48, 72 and 96 h. In Experiment 1, the effects of the storage period at 4 °C on the morphology, cytoskeleton (α/β tubulin) and DNA integrity (phosphorylation of histone H2AX) of preantral follicles were investigated. In Experiment 2, oocytes recovered from antral follicles were matured and fertilized in vitro to evaluate their meiotic and developmental competence . Reactive oxygen species (ROS), glutathione (GSH) and lipid peroxidation were measured in matured oocytes.

          Results

          The results showed that: a) storage up to 24 h did not affect the morphology and the DNA integrity of preantral follicles; b) extended storage times caused progressive morphological abnormalities, disassembling of microtubules and DNA damage; c) storage up to 48 h did not influence in vitro meiotic maturation of oocytes nor cleavage after in vitro fertilization. However, only oocytes stored within the ovary for 24 h produced blastocysts in a percentage similar to control oocytes; d) GSH levels of in vitro matured oocytes did not change at any time during ovary storage; a progressive increase in ROS levels was detected from 48 h associated with elevated lipid peroxidation at 72 and 96 h of storage.

          Conclusions

          Storage of cat ovaries for up to 24 h caused minimal alteration of preantral follicles and oocytes. The extension of the storage period beyond 24 h progressively impaired the structure of follicles, and modified the oxidative status of in vitro matured oocytes and their developmental competence after in vitro fertilization. This information may help when setting up programs for fertility conservation, especially for wild feline species which die in geographic areas located far away from ARTs centers.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of glutathione: implication in redox and detoxification.

          Glutathione is a ubiquitous thiol-containing tripeptide, which plays a central role in cell biology. It is implicated in the cellular defence against xenobiotics and naturally occurring deleterious compounds, such as free radicals and hydroperoxides. Glutathione status is a highly sensitive indicator of cell functionality and viability. Its levels in human tissues normally range from 0.1 to 10 mM, being most concentrated in liver (up to 10 mM) and in the spleen, kidney, lens, erythrocytes and leukocytes. In humans, GSH depletion is linked to a number of disease states including cancer, neurodegenerative and cardiovascular diseases. The present review proposes an analysis of the current knowledge about the methodologies for measuring glutathione in human biological samples and their feasibility as routine methods in clinical chemistry. Furthermore, it elucidates the fundamental role of glutathione in pathophysiological conditions and its implication in redox and detoxification process. Several methods have been optimised in order to identify and quantify glutathione forms in human biological samples. They include spectrophotometric, fluorometric and bioluminometric assays, often applied to HPLC analysis. Recently, a liquid chromatography-mass spectrometry technique for glutathione determination has been developed that, however, suffers from the lack of total automation and the high cost of the equipment. Glutathione is a critical factor in protecting organisms against toxicity and disease. This review may turn useful for analysing the glutathione homeostasis, whose impairment represents an indicator of tissue oxidative status in human subjects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress and ageing of the post-ovulatory oocyte.

            With extended periods of time following ovulation, the metaphase II stage oocyte experiences deterioration in quality referred to as post-ovulatory oocyte ageing. Post-ovulatory ageing occurs both in vivo and in vitro and has been associated with reduced fertilization rates, poor embryo quality, post-implantation errors and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been established, the molecular mechanisms controlling this process are not well defined. This review analyses the relationships between biochemical changes exhibited by the ageing oocyte and the symptoms associated with the ageing phenotype. We also discuss molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We propose that oxidative stress may act as the initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to cause a decline in levels of critical cell cycle factors such as maturation-promoting factor, impair calcium homoeostasis, induce mitochondrial dysfunction and directly damage multiple intracellular components of the oocyte such as lipids, proteins and DNA. Finally, this review addresses current strategies for delaying post-ovulatory oocyte ageing with a particular focus on the potential use of compounds such as caffeine or selected antioxidants in the development of more refined media for the preservation of oocyte integrity during IVF procedures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development in vitro of mouse oocytes from primordial follicles.

              The objective of these studies was to achieve complete oocyte development in vitro beginning with the oocytes in the primordial follicles of newborn mouse ovaries. A two-step strategy was developed: first the ovaries of newborn mice were grown in organ culture for 8 days, and then the developing oocyte-granulosa cell complexes were isolated from the organ-cultured ovaries and cultured for an additional 14 days. The oocytes of primordial follicles are approximately 4190 microns3 in volume (20 microns in diameter), and this volume increased by approximately 53,810 microns3 to a final size of 58,000 microns3--a 13.8-fold increase--during the 8 days of organ culture. In the first experiment the oocyte-granulosa cell complexes were grown in control medium or in medium supplemented with FSH (0.5 ng/ml), epidermal growth factor (EGF; 1.0 ng/ml), or EGF plus FSH. Only 50-60% of the complexes cultured in control medium or in medium supplemented with FSH were recovered at the end of the 14-day culture period. In contrast, more than 90% of the complexes cultured in medium supplemented with EGF were recovered. The median size of the oocytes grown in control medium was 176,800 microns3 (69-microns diameter), while the median size of those grown in medium supplemented with EGF was slightly smaller (136,400-microns3 volume; 63-microns diameter), due to the survival of more smaller-size oocytes in EGF-containing medium. Thirty percent of the oocytes recovered after development in FSH-containing medium were competent to undergo germinal vesicle breakdown (GVB). In the second set of experiments, oocyte-granulosa cell complexes isolated from organ-cultured ovaries were cultured in medium supplemented with either 0.5 or 5.0 ng/ml FSH or with these same concentrations of FSH plus 1.0 ng/ml EGF. Again, increased oocyte recovery was observed in the groups cultured with EGF. There was no difference among the groups in the percentage of the oocytes that acquired competence to undergo GVB (32%) or in the percentage of GVB oocytes that produced a polar body, thus indicating progression of meiosis to metaphase II (22%). When the mature oocytes were inseminated, 21% underwent fertilization and cleavage to the 2-cell stage in the groups without EGF during oocyte development, while 42% underwent fertilization and cleavage to the 2-cell stage in the groups cultured with EGF. Less than 2% of the 2-cell-stage embryos developed to the blastocyst stage in any of the groups. One hundred and ninety 2-cell-stage embryos were transferred to the oviducts of pseudopregnant females; two females produced one pup each; one was living and the other had apparently died recently. The results reported here clearly show that complete development of oocytes in vitro from the primordial follicle stage is possible and establish the framework for further studies using oocytes from laboratory animals as model systems for the development of oocytes from humans as well as from animals of agricultural and zoological importance.
                Bookmark

                Author and article information

                Contributors
                anrpiras@uniss.it
                gburrai@uniss.it
                federica@uniss.it
                lfalchi@uniss.it
                zedda@uniss.it
                nuvola@uniss.it
                sgadau@uniss.it
                eantuofermo@uniss.it
                dbebbere@uniss.it
                giodi@uniss.it
                luis@uniss.it
                Journal
                Reprod Biol Endocrinol
                Reprod. Biol. Endocrinol
                Reproductive Biology and Endocrinology : RB&E
                BioMed Central (London )
                1477-7827
                10 August 2018
                10 August 2018
                2018
                : 16
                : 76
                Affiliations
                ISNI 0000 0001 2097 9138, GRID grid.11450.31, Department of Veterinary Medicine, , University of Sassari, ; Via Vienna 2, 07100 Sassari, Italy
                Article
                395
                10.1186/s12958-018-0395-1
                6087010
                30097048
                d77734a2-eff4-4ee1-a3b5-c821cf77aedb
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 21 March 2018
                : 2 August 2018
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Human biology
                Human biology

                Comments

                Comment on this article