20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Expression and Differential Effects of the Activation of Glucocorticoid Receptors in Mouse Gonadotropin-Releasing Hormone Neurons

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prenatal exposure of rodents to glucocorticoids (Gc) affects the sexual development of the offspring, possibly interfering with the differentiation of the hypothalamic-pituitary-gonadal axis. Glucocorticoid receptors (GR) are present on gonadotropin-releasing hormone (GnRH) neurons in the rat hypothalamus, suggesting a direct effect of Gc in the control of the synthesis and/or release of the hormone. In this study, we demonstrate the colocalization of immunoreactive GR with GnRH in a subpopulation of mouse hypothalamic GnRH neurons, confirming the possible involvement of Gc in mouse GnRH neuronal physiology. Receptor-binding assay, RT-PCR, immunocytochemistry, and immunoblotting experiments carried out in GN11 immortalized GnRH neurons show the presence of GR even in the more immature mouse GnRH neurons and confirm the expression of GR in GT1-7 mature GnRH cells. In GN11 cells, the activation of GR with dexamethasone produces nuclear translocation, but does not lead to the inhibition of GnRH gene expression already reported in GT1-7 cells. Long-term exposure of GN11 cells to dexamethasone induces an epithelial-like phenotype with a reorganization of F-actin in stress fibers. Finally, we found that Gc treatment significantly decreases the migratory activity in vitro and the levels of phosphorylated focal adhesion kinase of GN11 immature neurons. In conclusion, these data indicate that GR are expressed in mouse hypothalamic GnRH neurons in vivo as well as in the immature GN11 GnRH neurons in vitro. Moreover, the effects of the GR activation in GN11 and in GT1-7 cells may be related to the neuronal maturational stage of the two cell lines, suggesting a differential role of Gc in neuronal development.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement.

            Engagement of integrin receptors with extracellular ligands gives rise to the formation of complex multiprotein structures that link the ECM to the cytoplasmic actin cytoskeleton. These adhesive complexes are dynamic, often heterogeneous structures, varying in size and organization. In motile cells, sites of adhesion within filopodia and lamellipodia are relatively small and transient and are referred to as 'focal complexes,' whereas adhesions underlying the body of the cell and localized to the ends of actin stress fibers are referred to as 'focal adhesions'. Signal transduction through focal complexes and focal adhesions has been implicated in the regulation of a number of key cellular processes, including growth factor induced mitogenic signals, cell survival and cell locomotion. The formation and remodeling of focal contacts is a dynamic process under the regulation of protein tyrosine kinases and small GTPases of the Rho family. In this review, we consider the role of the focal complex associated protein tyrosine kinase, Focal Adhesion Kinase (FAK), in the regulation of cell movement with the emphasis on how FAK regulates the flow of signals from the ECM to the actin cytoskeleton.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stress and hippocampal neurogenesis

              The dentate gyrus of the hippocampal formation develops during an extended period that begins during gestation and continues well into the postnatal period. Furthermore, the dentate gyrus undergoes continual structural remodeling in adulthood. The production of new granule neurons in adulthood has been documented in a number of mammalian species, ranging from rodents to primates. The late development of this brain region makes the dentate gyrus particularly sensitive to environmental and experience-dependent structural changes. Studies have demonstrated that the proliferation of granule cell precursors, and ultimately the production of new granule cells, are dependent on the levels of circulating adrenal steroids. Adrenal steroids inhibit cell proliferation in the dentate gyrus during the early postnatal period and in adulthood. The suppressive action of glucocorticoids on cell proliferation is not direct but occurs through an NMDA receptor-dependent excitatory pathway. Stressful experiences, which are known to elevate circulating levels of glucocorticoids and stimulate hippocampal glutamate release, inhibit the proliferation of granule cell precursors. Chronic stress results in persistent inhibition of granule cell production and changes in the structure of the dentate gyrus, raising the possibility that stress alters hippocampal function through this mechanism. This review considers the unusual developmental profile of the dentate gyrus and its vulnerability to environmental perturbations. The long-term impact of developmental events on hippocampal function is considered.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2005
                May 2006
                08 May 2006
                : 82
                : 3-4
                : 151-163
                Affiliations
                aDepartment of Endocrinology, Center of Excellence on Neurodegenerative Diseases, Milan, Italy; bDepartment of Endocrinology and Diabetology, Wrocław Medical University, Wrocław, Poland; cDepartment of Human Morphology, University of Milan, and dDepartments of Neuroscience and SCRI, San Raffaele Scientific Institute, Milan, Italy
                Article
                91693 Neuroendocrinology 2005;82:151–163
                10.1159/000091693
                16498266
                d7788f0e-dd31-4c48-a80e-88cd4735bf4b
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 22 July 2005
                : 12 December 2005
                Page count
                Figures: 7, References: 61, Pages: 13
                Categories
                Original Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Gonadotropin-releasing hormone neurons,Development,Gonadotropin-releasing hormone,Adrenal steroid receptors,Mice,Adrenal steroids

                Comments

                Comment on this article