26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vascular Smooth Muscle Sirtuin-1 Protects Against Aortic Dissection During Angiotensin II–Induced Hypertension

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sirtuin-1 (SirT1), a nicotinamide adenine dinucleotide +–dependent deacetylase, is a key enzyme in the cellular response to metabolic, inflammatory, and oxidative stresses; however, the role of endogenous SirT1 in the vasculature has not been fully elucidated. Our goal was to evaluate the role of vascular smooth muscle SirT1 in the physiological response of the aortic wall to angiotensin II, a potent hypertrophic, oxidant, and inflammatory stimulus.

          Methods and Results

          Mice lacking SirT1 in vascular smooth muscle (ie, smooth muscle SirT1 knockout) had drastically high mortality (70%) caused by aortic dissection after angiotensin II infusion (1 mg/kg per day) but not after an equipotent dose of norepinephrine, despite comparable blood pressure increases. Smooth muscle SirT1 knockout mice did not show any abnormal aortic morphology or blood pressure compared with wild-type littermates. Nonetheless, in response to angiotensin II, aortas from smooth muscle SirT1 knockout mice had severely disorganized elastic lamellae with frequent elastin breaks, increased oxidant production, and aortic stiffness compared with angiotensin II–treated wild-type mice. Matrix metalloproteinase expression and activity were increased in the aortas of angiotensin II–treated smooth muscle SirT1 knockout mice and were prevented in mice overexpressing SirT1 in vascular smooth muscle or with use of the oxidant scavenger tempol.

          Conclusions

          Endogenous SirT1 in aortic smooth muscle is required to maintain the structural integrity of the aortic wall in response to oxidant and inflammatory stimuli, at least in part, by suppressing oxidant-induced matrix metalloproteinase activity. SirT1 activators could potentially be a novel therapeutic approach to prevent aortic dissection and rupture in patients at risk, such as those with hypertension or genetic disorders, such as Marfan’s syndrome.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Mammalian sirtuins: biological insights and disease relevance.

          Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice.

            SIRT1 is a mammalian homolog of the Saccharomyces cerevisiae chromatin silencing factor Sir2. Dominant-negative and overexpression studies have implicated a role for SIRT1 in deacetylating the p53 tumor suppressor protein to dampen apoptotic and cellular senescence pathways. To elucidate SIRT1 function in normal cells, we used gene-targeted mutation to generate mice that express either a mutant SIRT1 protein that lacks part of the catalytic domain or has no detectable SIRT1 protein at all. Both types of SIRT1 mutant mice and cells had essentially the same phenotypes. SIRT1 mutant mice were small, and exhibited notable developmental defects of the retina and heart, and only infrequently survived postnatally. Moreover, SIRT1-deficient cells exhibited p53 hyperacetylation after DNA damage and increased ionizing radiation-induced thymocyte apoptosis. In SIRT1-deficient embryonic fibroblasts, however, p53 hyperacetylation after DNA damage was not accompanied by increased p21 protein induction or DNA damage sensitivity. Together, our observations provide direct evidence that endogenous SIRT1 protein regulates p53 acetylation and p53-dependent apoptosis, and show that the function of this enzyme is required for specific developmental processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SIRT1 controls endothelial angiogenic functions during vascular growth.

              The nicotinamide adenine dinucleotide (NAD(+))-dependent histone deacetylase Sir2 regulates life-span in various species. Mammalian homologs of Sir2 are called sirtuins (SIRT1-SIRT7). In an effort to define the role of sirtuins in vascular homeostasis, we found that among the SIRT family, SIRT1 uniquely regulates angiogenesis signaling. We show that SIRT1 is highly expressed in the vasculature during blood vessel growth, where it controls the angiogenic activity of endothelial cells. Loss of SIRT1 function blocks sprouting angiogenesis and branching morphogenesis of endothelial cells with consequent down-regulation of genes involved in blood vessel development and vascular remodeling. Disruption of SIRT1 gene expression in zebrafish and mice results in defective blood vessel formation and blunts ischemia-induced neovascularization. Through gain- and loss-of-function approaches, we show that SIRT1 associates with and deacetylates the forkhead transcription factor Foxo1, an essential negative regulator of blood vessel development to restrain its anti-angiogenic activity. These findings uncover a novel and unexpected role for SIRT1 as a critical modulator of endothelial gene expression governing postnatal vascular growth.
                Bookmark

                Author and article information

                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                jah3
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                John Wiley & Sons, Ltd (Chichester, UK )
                2047-9980
                2047-9980
                September 2015
                16 September 2015
                : 4
                : 9
                : e002384
                Affiliations
                [1 ]Vascular Biology Section, Boston University Medical Campus Boston, MA
                [2 ]Department of Biomedical Engineering, Boston University Boston, MA
                [3 ]Department of Mechanical Engineering, Boston University Boston, MA
                [4 ]Health Science Department, Boston University Boston, MA
                [5 ]Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Boston, MA
                Author notes
                Correspondence to: Francesca Seta, PhD, Vascular Biology Section, Boston University School of Medicine, 650 Albany St, X726, Boston, MA 02118. E-mail: setaf@ 123456bu.edu
                [*]

                Dr Fry and Dr Shiraishi contributed equally to this study.

                Article
                10.1161/JAHA.115.002384
                4599512
                26376991
                d785a327-8f8a-46c2-b026-3058e6b28733
                © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

                This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 07 July 2015
                : 30 July 2015
                Categories
                Original Research

                Cardiovascular Medicine
                angiotensin ii,aortic dissection,sirtuin-1,vascular smooth muscle
                Cardiovascular Medicine
                angiotensin ii, aortic dissection, sirtuin-1, vascular smooth muscle

                Comments

                Comment on this article