12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fabric phase sorptive extraction followed by UHPLC-MS/MS for the analysis of benzotriazole UV stabilizers in sewage samples

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Occurrence of Some Organic UV Filters in Wastewater, in Surface Waters, and in Fish from Swiss Lakes

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge.

            Benzophenones and benzotriazoles are widely used as ultraviolet (UV) light filters and stabilizers in cosmetics, skin creams, and body lotions and as corrosion inhibitors in building materials, automobile components, and automotive antifreeze cooling systems. Benzophenones and benzotriazoles have been reported to occur in the environment. Some of these UV filters have been reported to possess significant estrogenic activity. Despite this, very few studies have examined their occurrence and profiles in the environment. In this work, we determined five benzophenone-type UV filters and two benzotriazole-type corrosion inhibitors, namely, 2-hydroxy-4-methoxybenzophenone (2OH-4MeO-BP), 2,4-dihydroxybenzophenone (2,4OH-BP), 2,2'-dihydroxy-4-methoxybenzophenone (2,2'OH-4MeO-BP), 2,2',4,4'-tetrahydroxybenzophenone (2,2',4,4'OH-BP), 4-hydroxybenzophenone (4OH-BP), 1H-benzotriazole (1H-BT), and 5-methyl-1H-benzotriazole (5Me-1H-BT), in sediment and sewage sludge samples, using liquid-liquid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, four benzotriazole-type UV stabilizers, namely, 2-(3-t-butyl-2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole (UV-326), 2,4-di-t-butyl-6-(5-chloro-2H-benzotriazole-2-yl) phenol (UV-327), 2-(2H-benzotriazole-2yl)-4,6-di-t-pentylphenol (UV-328), and 2-(5-t-butyl-2-hydroxyphenyl) benzotriazole (TBHPBT) were determined by gas chromatography (GC)-mass spectrometry (MS). The limits of quantitation (LOQ) were in the ranges of 0.06-0.33 ng g⁻¹ dry weight (dw) and 0.1-1.65 ng g⁻¹ dw for sediment and sludge samples, respectively. Recoveries of target compounds spiked into sample matrices and passed through the entire analytical procedure ranged from 70% to 116% (RSD: 3.32-13.8%) and from 82% to 106% (RSD: 2.89-8.09%) for the compounds analyzed by LC-MS/MS and GC-MS, respectively. The methods were applied to the analysis of sediment samples from the Songhua, Saginaw, and Detroit Rivers; the sum concentrations of target compounds were 3.29-9.93, 5.81-22.5, and 190-389 ng g⁻¹ dw, respectively. Five sludge samples collected from five wastewater treatment plants in northeastern China contained the sum concentrations of target compounds in the range of 104-6370 ng g⁻¹ dw. The concentration of UV-328 in sludge was the highest (mean: 1300 ng g⁻¹ dw) among the target compounds. To our knowledge, this is the first work to report the occurrence of 2OH-4MeO-BP, 2,4OH-BP, 2,2'OH-4MeO-BP, 2,2',4,4'OH-BP, and 4OH-BP in sediment and sludge samples.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ionic liquids in solid-phase microextraction: a review.

              Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed.
                Bookmark

                Author and article information

                Journal
                Analytical and Bioanalytical Chemistry
                Anal Bioanal Chem
                Springer Nature
                1618-2642
                1618-2650
                October 2015
                September 7 2015
                October 2015
                : 407
                : 26
                : 8137-8150
                Article
                10.1007/s00216-015-8990-x
                d7907eba-5ba6-4599-ae57-863000d06b68
                © 2015
                History

                Comments

                Comment on this article