254
views
0
recommends
+1 Recommend
0 collections
    11
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gastrointestinal symptoms and altered blood phospholipid profiles have been reported in patients with autism spectrum disorders (ASD). Most of the phospholipid analyses have been conducted on the fatty acid composition of isolated phospholipid classes following hydrolysis. A paucity of information exists on how the intact phospholipid molecular species are altered in ASD. We applied ESI/MS to determine how brain and blood intact phospholipid species were altered during the induction of ASD-like behaviors in rats following intraventricular infusions with the enteric bacterial metabolite propionic acid. Animals were infused daily for 8 days, locomotor activity assessed, and animals killed during the induced behaviors. Propionic acid infusions increased locomotor activity. Lipid analysis revealed treatment altered 21 brain and 30 blood phospholipid molecular species. Notable alterations were observed in the composition of brain SM, diacyl mono and polyunsaturated PC, PI, PS, PE, and plasmalogen PC and PE molecular species. These alterations suggest that the propionic acid rat model is a useful tool to study aberrations in lipid metabolism known to affect membrane fluidity, peroxisomal function, gap junction coupling capacity, signaling, and neuroinflammation, all of which may be associated with the pathogenesis of ASD.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation.

          Short chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are produced at high concentration by bacteria in the gut and subsequently released in the bloodstream. Basal acetate concentrations in the blood (about 100 microm) can further increase to millimolar concentrations following alcohol intake. It was known previously that SCFAs can activate leukocytes, particularly neutrophils. In the present work, we have identified two previously orphan G protein-coupled receptors, GPR41 and GPR43, as receptors for SCFAs. Propionate was the most potent agonist for both GPR41 and GPR43. Acetate was more selective for GPR43, whereas butyrate and isobutyrate were more active on GPR41. The two receptors were coupled to inositol 1,4,5-trisphosphate formation, intracellular Ca2+ release, ERK1/2 activation, and inhibition of cAMP accumulation. They exhibited, however, a differential coupling to G proteins; GPR41 coupled exclusively though the Pertussis toxin-sensitive Gi/o family, whereas GPR43 displayed a dual coupling through Gi/o and Pertussis toxin-insensitive Gq protein families. The broad expression profile of GPR41 in a number of tissues does not allow us to infer clear hypotheses regarding its biological functions. In contrast, the highly selective expression of GPR43 in leukocytes, particularly polymorphonuclear cells, suggests a role in the recruitment of these cell populations toward sites of bacterial infection. The pharmacology of GPR43 matches indeed the effects of SCFAs on neutrophils, in terms of intracellular Ca2+ release and chemotaxis. Such a neutrophil-specific SCFA receptor is potentially involved in the development of a variety of diseases characterized by either excessive or inefficient neutrophil recruitment and activation, such as inflammatory bowel diseases or alcoholism-associated immune depression. GPR43 might therefore constitute a target allowing us to modulate immune responses in these pathological situations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pyrosequencing study of fecal microflora of autistic and control children.

            There is evidence of genetic predisposition to autism, but the percent of autistic subjects with this background is unknown. It is clear that other factors, such as environmental influences, may play a role in this disease. In the present study, we have examined the fecal microbial flora of 33 subjects with various severities of autism with gastrointestinal symptoms, 7 siblings not showing autistic symptoms (sibling controls) and eight non-sibling control subjects, using the bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) procedure. The results provide us with information on the microflora of stools of young children and a compelling picture of unique fecal microflora of children with autism with gastrointestinal symptomatology. Differences based upon maximum observed and maximum predicted operational taxonomic units were statistically significant when comparing autistic and control subjects with p-values ranging from <0.001 to 0.009 using both parametric and non-parametric estimators. At the phylum level, Bacteroidetes and Firmicutes showed the most difference between groups of varying severities of autism. Bacteroidetes was found at high levels in the severely autistic group, while Firmicutes were more predominant in the control group. Smaller, but significant, differences also occurred in the Actinobacterium and Proteobacterium phyla. Desulfovibrio species and Bacteroides vulgatus are present in significantly higher numbers in stools of severely autistic children than in controls. If the unique microbial flora is found to be a causative or consequent factor in this type of autism, it may have implications with regard to a specific diagnostic test, its epidemiology, and for treatment and prevention. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders.

              Clinical observations suggest that certain gut and dietary factors may transiently worsen symptoms in autism spectrum disorders (ASD), epilepsy and some inheritable metabolic disorders. Propionic acid (PPA) is a short chain fatty acid and an important intermediate of cellular metabolism. PPA is also a by-product of a subpopulation of human gut enterobacteria and is a common food preservative. We examined the behavioural, electrophysiological, neuropathological, and biochemical effects of treatment with PPA and related compounds in adult rats. Intraventricular infusions of PPA produced reversible repetitive dystonic behaviours, hyperactivity, turning behaviour, retropulsion, caudate spiking, and the progressive development of limbic kindled seizures, suggesting that this compound has central effects. Biochemical analyses of brain homogenates from PPA treated rats showed an increase in oxidative stress markers (e.g., lipid peroxidation and protein carbonylation) and glutathione S-transferase activity coupled with a decrease in glutathione and glutathione peroxidase activity. Neurohistological examinations of hippocampus and adjacent white matter (external capsule) of PPA treated rats revealed increased reactive astrogliosis (GFAP immunoreactivity) and activated microglia (CD68 immunoreactivity) suggestive of a neuroinflammatory process. This was coupled with a lack of cytotoxicity (cell counts, cleaved caspase 3' immunoreactivity), and an increase in phosphorylated CREB immunoreactivity. We propose that some types of autism may be partial forms of genetically inherited or acquired disorders involving altered PPA metabolism. Thus, intraventricular administration of PPA in rats may provide a means to model some aspects of human ASD in rats.
                Bookmark

                Author and article information

                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central
                1742-2094
                2012
                2 July 2012
                : 9
                : 153
                Affiliations
                [1 ]The Kilee Patchell-Evans Autism Research Group, Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada
                [2 ]Department of Obstetrics/Gynecology and Biochemistry, University of Western Ontario, London Health Sciences Center, London, ON, Canada
                [3 ]Biological Mass Spectrometry Laboratory, Department of Biochemistry, University of Western Ontario, London, ON, Canada
                Article
                1742-2094-9-153
                10.1186/1742-2094-9-153
                3472254
                22747852
                d793cf77-2ad1-4ca2-a145-180606895897
                Copyright ©2012 Thomas et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 February 2012
                : 29 May 2012
                Categories
                Research

                Neurosciences
                gap junction,oxidative stress,locomotor activity,membrane fluidity,docosahexaenoic acid,plasmalogens

                Comments

                Comment on this article