71
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alpha-synuclein (α-Syn) aggregates are the main component of Lewy bodies, which are the characteristic pathological feature in Parkinson's disease (PD) brain. Evidence that α-Syn aggregation can be propagated between neurones has led to the suggestion that this mechanism is responsible for the stepwise progression of PD pathology. Decreasing α-Syn expression is predicted to attenuate this process and is thus an attractive approach to delay or halt PD progression. We have used α-Syn small interfering RNA (siRNA) to reduce total and aggregated α-Syn levels in mouse brains. To achieve widespread delivery of siRNAs to the brain we have peripherally injected modified exosomes expressing Ravies virus glycoprotein loaded with siRNA. Normal mice were analyzed 3 or 7 days after injection. To evaluate whether this approach can decrease α-Syn aggregates, we repeated the treatment using transgenic mice expressing the human phosphorylation-mimic S129D α-Syn, which exhibits aggregation. In normal mice we detected significantly reduced α-Syn messenger RNA (mRNA) and protein levels throughout the brain 3 and 7 days after treatment with RVG-exosomes loaded with siRNA to α-Syn. In S129D α-Syn transgenic mice we found a decreased α-Syn mRNA and protein levels throughout the brain 7 days after injection. This resulted in significant reductions in intraneuronal protein aggregates, including in dopaminergic neurones of the substantia nigra. This study highlights the therapeutic potential of RVG-exosome delivery of siRNA to delay and reverse brain α-Syn pathological conditions. © 2014 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

          Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.

            To realize the therapeutic potential of RNA drugs, efficient, tissue-specific and nonimmunogenic delivery technologies must be developed. Here we show that exosomes-endogenous nano-vesicles that transport RNAs and proteins-can deliver short interfering (si)RNA to the brain in mice. To reduce immunogenicity, we used self-derived dendritic cells for exosome production. Targeting was achieved by engineering the dendritic cells to express Lamp2b, an exosomal membrane protein, fused to the neuron-specific RVG peptide. Purified exosomes were loaded with exogenous siRNA by electroporation. Intravenously injected RVG-targeted exosomes delivered GAPDH siRNA specifically to neurons, microglia, oligodendrocytes in the brain, resulting in a specific gene knockdown. Pre-exposure to RVG exosomes did not attenuate knockdown, and non-specific uptake in other tissues was not observed. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated by the strong mRNA (60%) and protein (62%) knockdown of BACE1, a therapeutic target in Alzheimer's disease, in wild-type mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              alpha-Synuclein is phosphorylated in synucleinopathy lesions.

              The deposition of the abundant presynaptic brain protein alpha-synuclein as fibrillary aggregates in neurons or glial cells is a hallmark lesion in a subset of neurodegenerative disorders. These disorders include Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy, collectively referred to as synucleinopathies. Importantly, the identification of missense mutations in the alpha-synuclein gene in some pedigrees of familial PD has strongly implicated alpha-synuclein in the pathogenesis of PD and other synucleinopathies. However, specific post-translational modifications that underlie the aggregation of alpha-synuclein in affected brains have not, as yet, been identified. Here, we show by mass spectrometry analysis and studies with an antibody that specifically recognizes phospho-Ser 129 of alpha-synuclein, that this residue is selectively and extensively phosphorylated in synucleinopathy lesions. Furthermore, phosphorylation of alpha-synuclein at Ser 129 promoted fibril formation in vitro. These results highlight the importance of phosphorylation of filamentous proteins in the pathogenesis of neurodegenerative disorders.
                Bookmark

                Author and article information

                Journal
                Mov Disord
                Mov. Disord
                mds
                Movement Disorders
                BlackWell Publishing Ltd (Oxford, UK )
                0885-3185
                1531-8257
                October 2014
                11 August 2014
                : 29
                : 12
                : 1476-1485
                Affiliations
                [1 ]Department of Clinical Neuroscience, Institute of Neurology, University College London London, United Kingdom
                [2 ]Department of Laboratory Medicine, Karolinska Institutet Huddinge, Sweden
                [3 ]Centre for Biomedical Science, Division of Medicine, UCL London, United Kingdom
                [4 ]Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, United Kingdom
                [5 ]Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, UCL London, United Kingdom
                Author notes
                * Correspondence to: Dr. L. Alvarez-Erviti, Department of Clinical Neuroscience, UCL Institute of Neurology, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, United Kingdom, E-mail: lydia.alvarez@ 123456ucl.ac.uk
                [†]

                These authors contributed equally to this work.

                Article
                10.1002/mds.25978
                4204174
                25112864
                d79d0a11-24ef-4aa0-a6c7-1ad6dbf5d9c6
                © 2014 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 March 2014
                : 02 July 2014
                : 06 July 2014
                Categories
                Featured Article

                Medicine
                α-syn,rvg-exosomes,sirna,transgenic mice
                Medicine
                α-syn, rvg-exosomes, sirna, transgenic mice

                Comments

                Comment on this article