40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Function, regulation and pathological roles of the Gab/DOS docking proteins

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and amplify signals from a wide variety of sources including growth factor, cytokine and antigen receptors as well as cell adhesion molecules. They also contribute to signal diversification by channelling the information from activated receptors into signalling pathways with distinct biological functions. Recent approaches in protein biochemistry and systems biology have revealed that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre of entire signalling subsystems and fulfil an important if not essential role in many physiological processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human diseases from various forms of neoplasia to Alzheimer's disease.

          In this review, we provide a detailed overview of the structure, effector functions, regulation and evolution of the Gab/DOS family. We also summarize recent findings implicating Gab proteins, in particular the Gab2 isoform, in leukaemia, solid tumours and other human diseases.

          Related collections

          Most cited references219

          • Record: found
          • Abstract: found
          • Article: not found

          Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization.

          Sea anemones are seemingly primitive animals that, along with corals, jellyfish, and hydras, constitute the oldest eumetazoan phylum, the Cnidaria. Here, we report a comparative analysis of the draft genome of an emerging cnidarian model, the starlet sea anemone Nematostella vectensis. The sea anemone genome is complex, with a gene repertoire, exon-intron structure, and large-scale gene linkage more similar to vertebrates than to flies or nematodes, implying that the genome of the eumetazoan ancestor was similarly complex. Nearly one-fifth of the inferred genes of the ancestor are eumetazoan novelties, which are enriched for animal functions like cell signaling, adhesion, and synaptic transmission. Analysis of diverse pathways suggests that these gene "inventions" along the lineage leading to animals were likely already well integrated with preexisting eukaryotic genes in the eumetazoan progenitor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Trichoplax genome and the nature of placozoans.

            As arguably the simplest free-living animals, placozoans may represent a primitive metazoan form, yet their biology is poorly understood. Here we report the sequencing and analysis of the approximately 98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole-genome phylogenetic analysis suggests that placozoans belong to a 'eumetazoan' clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome shows conserved gene content, gene structure and synteny in relation to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich array of transcription factor and signalling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modelling glandular epithelial cancers in three-dimensional cultures.

              Little is known about how the genotypic and molecular abnormalities associated with epithelial cancers actually contribute to the histological phenotypes observed in tumours in vivo. 3D epithelial culture systems are a valuable tool for modelling cancer genes and pathways in a structurally appropriate context. Here, we review the important features of epithelial structures grown in 3D basement membrane cultures, and how such models have been used to investigate the mechanisms associated with tumour initiation and progression.
                Bookmark

                Author and article information

                Journal
                Cell Commun Signal
                Cell Communication and Signaling : CCS
                BioMed Central
                1478-811X
                2009
                8 September 2009
                : 7
                : 22
                Affiliations
                [1 ]Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Germany
                [2 ]Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Germany
                [3 ]Institute for Biology III, Albert-Ludwigs-University of Freiburg, Germany
                [4 ]Cancer Research Program, The Garvan Institute of Medical Research, Australia
                [5 ]St Vincent's Clinical School, University of New South Wales, Australia
                [6 ]Centre for Biological Signalling studies (bioss), Albert-Ludwigs-University of Freiburg, Germany
                Article
                1478-811X-7-22
                10.1186/1478-811X-7-22
                2747914
                19737390
                d79fe0f7-3710-4114-8339-57ebdf886fc4
                Copyright ©2009 Wöhrle et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 June 2009
                : 8 September 2009
                Categories
                Review

                Cell biology
                Cell biology

                Comments

                Comment on this article