28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti–IL-20 monoclonal antibody inhibits the differentiation of osteoclasts and protects against osteoporotic bone loss

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          IL-20 promotes osteoclast differentiation by inducing RANK and RANKL expression in osteoclast precursors and osteoblasts, respectively.

          Abstract

          IL-20 is a proinflammatory cytokine of the IL-10 family that is involved in psoriasis, rheumatoid arthritis, atherosclerosis, and stroke. However, little is known about the role of IL-20 in bone destruction. We explored the function of IL-20 in osteoclastogenesis and the therapeutic potential of anti–IL-20 monoclonal antibody 7E for treating osteoporosis. Higher serum IL-20 levels were detected in patients with osteopenia and osteoporosis and in ovariectomized (OVX) mice. IL-20 mediates osteoclastogenesis by up-regulating the receptor activator of NF-κB (RANK) expression in osteoclast precursor cells and RANK ligand (RANKL) in osteoblasts. 7E treatment completely inhibited osteoclast differentiation induced by macrophage colony-stimulating factor (M-CSF) and RANKL in vitro and protected mice from OVX-induced bone loss in vivo. Furthermore, IL-20R1–deficient mice had significantly higher bone mineral density (BMD) than did wild-type controls. IL-20R1 deficiency also abolished IL-20–induced osteoclastogenesis and increased BMD in OVX mice. We have identified a pivotal role of IL-20 in osteoclast differentiation, and we conclude that anti–IL-20 monoclonal antibody is a potential therapeutic for protecting against osteoporotic bone loss.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin-10 and related cytokines and receptors.

          The Class 2 alpha-helical cytokines consist of interleukin-10 (IL-10), IL-19, IL-20, IL-22, IL-24 (Mda-7), and IL-26, interferons (IFN-alpha, -beta, -epsilon, -kappa, -omega, -delta, -tau, and -gamma) and interferon-like molecules (limitin, IL-28A, IL-28B, and IL-29). The interaction of these cytokines with their specific receptor molecules initiates a broad and varied array of signals that induce cellular antiviral states, modulate inflammatory responses, inhibit or stimulate cell growth, produce or inhibit apoptosis, and affect many immune mechanisms. The information derived from crystal structures and molecular evolution has led to progress in the analysis of the molecular mechanisms initiating their biological activities. These cytokines have significant roles in a variety of pathophysiological processes as well as in regulation of the immune system. Further investigation of these critical intercellular signaling molecules will provide important information to enable these proteins to be used more extensively in therapy for a variety of diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism.

            We have generated RANK (receptor activator of NF-kappaB) nullizygous mice to determine the molecular genetic interactions between osteoprotegerin, osteoprotegerin ligand, and RANK during bone resorption and remodeling processes. RANK(-/-) mice lack osteoclasts and have a profound defect in bone resorption and remodeling and in the development of the cartilaginous growth plates of endochondral bone. The osteopetrosis observed in these mice can be reversed by transplantation of bone marrow from rag1(-/-) (recombinase activating gene 1) mice, indicating that RANK(-/-) mice have an intrinsic defect in osteoclast function. Calciotropic hormones and proresorptive cytokines that are known to induce bone resorption in mice and human were administered to RANK(-/-) mice without inducing hypercalcemia, although tumor necrosis factor alpha treatment leads to the rare appearance of osteoclast-like cells near the site of injection. Osteoclastogenesis can be initiated in RANK(-/-) mice by transfer of the RANK cDNA back into hematopoietic precursors, suggesting a means to critically evaluate RANK structural features required for bone resorption. Together these data indicate that RANK is the intrinsic cell surface determinant that mediates osteoprotegerin ligand effects on bone resorption and remodeling as well as the physiological and pathological effects of calciotropic hormones and proresorptive cytokines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RANK-L and RANK: T cells, bone loss, and mammalian evolution.

              TNF and TNFR family proteins play important roles in the control of cell death, proliferation, autoimmunity, the function of immune cells, or the organogenesis of lymphoid organs. Recently, novel members of this large family have been identified that have critical functions in immunity and that couple lymphoid cells with other organ systems such as bone morphogenesis and mammary gland formation in pregnancy. The TNF-family molecule RANK-L (RANK-L, TRANCE, ODF) and its receptor RANK are key regulators of bone remodeling, and they are essential for the development and activation of osteoclasts. Intriguingly, RANK-L/RANK interactions also regulate T cell/dendritic cell communications, dendritic cell survival, and lymph node formation; T cell-derived RANK-L can mediate bone loss in arthritis and periodontal disease. Moreover, RANK-L and RANK are expressed in mammary gland epithelial cells, and they control the development of a lactating mammary gland during pregnancy and the propagation of mammalian species. Modulation of these systems provides us with a unique opportunity to design novel therapeutics to inhibit bone loss in arthritis, periodontal disease, and osteoporosis.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                29 August 2011
                : 208
                : 9
                : 1849-1861
                Affiliations
                [1 ]Institute of Biopharmaceutical Sciences , [2 ]Department of Biochemistry and Molecular Biology , and [3 ]Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
                Author notes
                CORRESPONDENCE Ming-Shi Chang: mschang@ 123456mail.ncku.edu.tw
                Article
                20102234
                10.1084/jem.20102234
                3171097
                21844205
                d7a1ffe7-e164-482f-b98d-f537f3996d36
                © 2011 Hsu et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 22 October 2010
                : 22 July 2011
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article