40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chemoattractants Induce a Rapid and Transient Upregulation of Monocyte α4 Integrin Affinity for Vascular Cell Adhesion Molecule 1 Which Mediates Arrest : An Early Step in the Process of Emigration

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemoattractants and chemokines induce arrest of rolling monocytes during emigration from blood into tissues. In this study, we demonstrated that α4 integrin affinity for vascular cell adhesion molecule (VCAM)-1 was upregulated rapidly and transiently by chemoattractants and stromal cell–derived factor (SDF)-1α and mediated monocyte arrest. α4 integrin affinity changes were detected and blocked using soluble VCAM-1/Fc (sVCAM-1/Fc). In a flow cytometry assay, markedly increased sVCAM-1/Fc binding to human blood monocytes or U937 cells transfected with formyl peptide (FP) receptor was detected 30 s after FP or SDF-1α treatment and declined after 2 min. In a parallel plate flow chamber assay, FP, C5a, platelet-activating factor, or SDF-1α coimmobilized with VCAM-1 induced leukocyte arrest, which was blocked by inclusion of sVCAM-1/Fc but not soluble nonimmune immunoglobulin G in the assay buffer.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Lymphocyte homing and homeostasis.

          The integration and control of systemic immune responses depends on the regulated trafficking of lymphocytes. This lymphocyte "homing" process disperses the immunologic repertoire, directs lymphocyte subsets to the specialized microenvironments that control their differentiation and regulate their survival, and targets immune effector cells to sites of antigenic or microbial invasion. Recent advances reveal that the exquisite specificity of lymphocyte homing is determined by combinatorial "decision processes" involving multistep sequential engagement of adhesion and signaling receptors. These homing-related interactions are seamlessly integrated into the overall interaction of the lymphocyte with its environment and participate directly in the control of lymphocyte function, life-span, and population dynamics. In this article a review of the molecular basis of lymphocyte homing is presented, and mechanisms by which homing physiology regulated the homeostasis of immunologic resources are proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fractalkine and CX3CR1 Mediate a Novel Mechanism of Leukocyte Capture, Firm Adhesion, and Activation under Physiologic Flow

            Leukocyte migration into sites of inflammation involves multiple molecular interactions between leukocytes and vascular endothelial cells, mediating sequential leukocyte capture, rolling, and firm adhesion. In this study, we tested the role of molecular interactions between fractalkine (FKN), a transmembrane mucin-chemokine hybrid molecule expressed on activated endothelium, and its receptor (CX3CR1) in leukocyte capture, firm adhesion, and activation under physiologic flow conditions. Immobilized FKN fusion proteins captured resting peripheral blood mononuclear cells at physiologic wall shear stresses and induced firm adhesion of resting monocytes, resting and interleukin (IL)-2–activated CD8+ T lymphocytes and IL-2–activated NK cells. FKN also induced cell shape change in firmly adherent monocytes and IL-2–activated lymphocytes. CX3CR1-transfected K562 cells, but not control K562 cells, firmly adhered to FKN-expressing ECV-304 cells (ECV-FKN) and tumor necrosis factor α–activated human umbilical vein endothelial cells. This firm adhesion was not inhibited by pertussis toxin, EDTA/EGTA, or antiintegrin antibodies, indicating that the firm adhesion was integrin independent. In summary, FKN mediated the rapid capture, integrin-independent firm adhesion, and activation of circulating leukocytes under flow. Thus, FKN and CX3CR1 mediate a novel pathway for leukocyte trafficking.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The integrin VLA-4 supports tethering and rolling in flow on VCAM-1

              Selectins have previously been shown to tether a flowing leukocyte to a vessel wall and mediate rolling. Here, we report that an intergrin, VLA- 4, can also support tethering and rolling. Blood T lymphocytes and alpha 4 integrin-transfected cells can tether in shear flow, and then roll, through binding of the intergrin VLA-4 to purified VCAM-1 on the wall of a flow chamber. VLA-4 transfectants showed similar tethering and rolling on TNF-stimulated endothelium. Tethering efficiency, rolling velocity, and resistance to detachment are related to VCAM-1 density. Tethering and rolling did not occur on ICAM-1, fibronectin, or fibronectin fragments, and tethering did not require integrin activation or the presence of an alpha 4 cytoplasmic domain. Arrest of rolling cells on VCAM-1 occurred spontaneously, and/or was triggered by integrin activating agents Mn2+, phorbol ester, and mAb TS2/16. These agents, and the alpha 4 cytoplasmic domain, promoted increased resistance to detachment. Together the results show that VLA-4 is a versatile integrin that can mediate tethering, rolling, and firm arrest on VCAM-1.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                21 May 2001
                : 193
                : 10
                : 1149-1158
                Affiliations
                [a ]Department of Laboratory Medicine and Pathobiology, University of Toronto and Toronto General Research Institute, Toronto, Ontario, Canada M5G 2C4
                Article
                001937
                10.1084/jem.193.10.1149
                2193331
                11369786
                d7c04829-65cb-4f43-bcc8-4d906da5b404
                © 2001 The Rockefeller University Press
                History
                : 22 November 2000
                : 30 March 2001
                : 16 April 2001
                Categories
                Original Article

                Medicine
                chemokines,formyl peptide,inflammation,stromal cell–derived factor 1α,very late antigen 4

                Comments

                Comment on this article