15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain Activity Elicited by Positive and Negative Feedback in Preschool-Aged Children

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To investigate the processing of positive vs. negative feedback in children aged 4–5 years, we devised a prize-guessing game that is analogous to gambling tasks used to measure feedback-related brain responses in adult studies. Unlike adult studies, the feedback-related negativity (FRN) elicited by positive feedback was as large as that elicited by negative feedback, suggesting that the neural system underlying the FRN may not process feedback valence in early childhood. In addition, positive feedback, compared with negative feedback, evoked a larger P1 over the occipital scalp area and a larger positive slow wave (PSW) over the right central-parietal scalp area. We believe that the PSW is related to emotional arousal and the intensive focus on positive feedback that is present in the preschool and early school years has adaptive significance for both cognitive and emotional development during this period.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity.

          The authors present a unified account of 2 neural systems concerned with the development and expression of adaptive behaviors: a mesencephalic dopamine system for reinforcement learning and a "generic" error-processing system associated with the anterior cingulate cortex. The existence of the error-processing system has been inferred from the error-related negativity (ERN), a component of the event-related brain potential elicited when human participants commit errors in reaction-time tasks. The authors propose that the ERN is generated when a negative reinforcement learning signal is conveyed to the anterior cingulate cortex via the mesencephalic dopamine system and that this signal is used by the anterior cingulate cortex to modify performance on the task at hand. They provide support for this proposal using both computational modeling and psychophysiological experimentation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brain potentials in affective picture processing: covariation with autonomic arousal and affective report

            Emotionally arousing picture stimuli evoked scalp-recorded event-related potentials. A late, slow positive voltage change was observed, which was significantly larger for affective than neutral stimuli. This positive shift began 200-300 ms after picture onset, reached its maximum amplitude approximately 1 s after picture onset, and was sustained for most of a 6-s picture presentation period. The positive increase was not related to local probability of content type, but was accentuated for pictures that prompted increased autonomic responses and reports of greater affective arousal (e.g. erotic or violent content). These results suggest that the late positive wave indicates a selective processing of emotional stimuli, reflecting the activation of motivational systems in the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Independent coding of reward magnitude and valence in the human brain.

              Previous research has shown that two components of the event-related brain potential, the P300 and feedback negativity, are sensitive to information about rewards and penalties. The present study investigated the properties of these components in a simple gambling game that required participants to choose between cards that were unpredictably associated with monetary gains and losses of variable magnitude. The aim was to determine the sensitivity of each component to two critical features of reward stimuli: magnitude (small or large) and valence (win or loss). A double dissociation was observed, with the P300 sensitive to reward magnitude but insensitive to reward valence and the feedback negativity showing the opposite pattern, suggesting that these two fundamental features of rewarding stimuli are evaluated rapidly and separately in the human brain. Subsequent analyses provided additional evidence of functional dissociations between the feedback negativity and P300. First, the P300 (but not the feedback negativity) showed sensitivity to the reward value of alternative, nonselected stimuli. Second, individual differences in the amplitude of the feedback negativity correlated with individual differences in risk-taking behavior observed after monetary losses, whereas individual differences in P300 amplitude were related to behavioral adjustments observed in response to alternative, unchosen outcomes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                19 April 2011
                : 6
                : 4
                : e18774
                Affiliations
                [1 ]Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan, United States of America
                [2 ]Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
                [3 ]Department of Psychology, Boston University, Boston, Massachusetts, United States of America
                [4 ]State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
                University College London, United Kingdom
                Author notes

                Conceived and designed the experiments: XM CL TT. Performed the experiments: XM Y-JL. Analyzed the data: XM CL. Contributed reagents/materials/analysis tools: TT Y-JL. Wrote the paper: XM TT WJG CL SND.

                Article
                PONE-D-11-02558
                10.1371/journal.pone.0018774
                3079726
                21526189
                d7c1c54e-90f5-446c-8018-a3326a7905ce
                Mai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 February 2011
                : 9 March 2011
                Page count
                Pages: 6
                Categories
                Research Article
                Biology
                Neuroscience
                Cognitive Neuroscience
                Social and Behavioral Sciences
                Psychology
                Developmental Psychology
                Neuropsychology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article