102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Origin of land plants: Do conjugating green algae hold the key?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales). For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial.

          Results

          Here, we use a large data set of nuclear-encoded genes (129 proteins) from 40 green plant taxa (Viridiplantae) including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales are the sister group to embryophytes.

          Conclusions

          Our analyses support the notion that the Charales are not the closest living relatives of embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it should allow us to address important questions regarding the primary adaptations of viridiplants during the conquest of land. Clearly, the biology of the Zygnematales will receive renewed interest in the future.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants.

          We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana

            Background LEA (late embryogenesis abundant) proteins have first been described about 25 years ago as accumulating late in plant seed development. They were later found in vegetative plant tissues following environmental stress and also in desiccation tolerant bacteria and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Results We present a genome-wide analysis of LEA proteins and their encoding genes in Arabidopsis thaliana. We identified 51 LEA protein encoding genes in the Arabidopsis genome that could be classified into nine distinct groups. Expression studies were performed on all genes at different developmental stages, in different plant organs and under different stress and hormone treatments using quantitative RT-PCR. We found evidence of expression for all 51 genes. There was only little overlap between genes expressed in vegetative tissues and in seeds and expression levels were generally higher in seeds. Most genes encoding LEA proteins had abscisic acid response (ABRE) and/or low temperature response (LTRE) elements in their promoters and many genes containing the respective promoter elements were induced by abscisic acid, cold or drought. We also found that 33% of all Arabidopsis LEA protein encoding genes are arranged in tandem repeats and that 43% are part of homeologous pairs. The majority of LEA proteins were predicted to be highly hydrophilic and natively unstructured, but some were predicted to be folded. Conclusion The analyses indicate a wide range of sequence diversity, intracellular localizations, and expression patterns. The high fraction of retained duplicate genes and the inferred functional diversification indicate that they confer an evolutionary advantage for an organism under varying stressful environmental conditions. This comprehensive analysis will be an important starting point for future efforts to elucidate the functional role of these enigmatic proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A molecular timeline for the origin of photosynthetic eukaryotes.

              The appearance of photosynthetic eukaryotes (algae and plants) dramatically altered the Earth's ecosystem, making possible all vertebrate life on land, including humans. Dating algal origin is, however, frustrated by a meager fossil record. We generated a plastid multi-gene phylogeny with Bayesian inference and then used maximum likelihood molecular clock methods to estimate algal divergence times. The plastid tree was used as a surrogate for algal host evolution because of recent phylogenetic evidence supporting the vertical ancestry of the plastid in the red, green, and glaucophyte algae. Nodes in the plastid tree were constrained with six reliable fossil dates and a maximum age of 3,500 MYA based on the earliest known eubacterial fossil. Our analyses support an ancient (late Paleoproterozoic) origin of photosynthetic eukaryotes with the primary endosymbiosis that gave rise to the first alga having occurred after the split of the Plantae (i.e., red, green, and glaucophyte algae plus land plants) from the opisthokonts sometime before 1,558 MYA. The split of the red and green algae is calculated to have occurred about 1,500 MYA, and the putative single red algal secondary endosymbiosis that gave rise to the plastid in the cryptophyte, haptophyte, and stramenopile algae (chromists) occurred about 1,300 MYA. These dates, which are consistent with fossil evidence for putative marine algae (i.e., acritarchs) from the early Mesoproterozoic (1,500 MYA) and with a major eukaryotic diversification in the very late Mesoproterozoic and Neoproterozoic, provide a molecular timeline for understanding algal evolution.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2011
                18 April 2011
                : 11
                : 104
                Affiliations
                [1 ]Biozentrum Köln, Botanik, Universität zu Köln, Zülpicher Straße 47b, 50674 Köln, Germany
                [2 ]Centre Robert-Cedergren, Département de Biochimie, Université de Montréal, Succursale Centre-Ville, Montréal, Qc H3C3J7, Canada
                [3 ]Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB Müggelseedamm 310, D-12587 Berlin, Germany
                [4 ]Fritz-Lipmann-Institut, Beutenbergstraße 11, 07745 Jena, Germany
                Article
                1471-2148-11-104
                10.1186/1471-2148-11-104
                3088898
                21501468
                d7c200b6-d010-4683-be45-6d70b0ef10e6
                Copyright ©2011 Wodniok et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 December 2010
                : 18 April 2011
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article