10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Collective Migration of Lens Epithelial Cell Induced by Differential Microscale Groove Patterns

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Herein, a micro-patterned cell adhesive surface is prepared for the future design of medical devices. One-dimensional polydimethylsiloxane (PDMS) micro patterns were prepared by a photolithography process. We investigated the effect of microscale topographical patterned surfaces on decreasing the collective cell migration rate. PDMS substrates were prepared through soft lithography using Si molds fabricated by photolithography. Afterwards, we observed the collective cell migration of human lens epithelial cells (B-3) on various groove/ridge patterns and evaluated the migration rate to determine the pattern most effective in slowing down the cell sheet spreading speed. Microgroove patterns were variable, with widths of 3, 5, and 10 µm. After the seeding, time-lapse images were taken under controlled cell culturing conditions. Cell sheet borders were drawn in order to assess collective migration rate. Our experiments revealed that the topographical patterned surfaces could be applied to intraocular lenses to prevent or slow the development of posterior capsular opacification (PCO) by delaying the growth and spread of human lens epithelial cells.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Plasticity of cell migration: a multiscale tuning model

          Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or collectively. Using a multiparameter tuning model, we describe how dimension, density, stiffness, and orientation of the extracellular matrix together with cell determinants—including cell–cell and cell–matrix adhesion, cytoskeletal polarity and stiffness, and pericellular proteolysis—interdependently control migration mode and efficiency. Motile cells integrate variable inputs to adjust interactions among themselves and with the matrix to dictate the migration mode. The tuning model provides a matrix of parameters that control cell movement as an adaptive and interconvertible process with relevance to different physiological and pathological contexts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanical integration of actin and adhesion dynamics in cell migration.

            Directed cell migration is a physical process that requires dramatic changes in cell shape and adhesion to the extracellular matrix. For efficient movement, these processes must be spatiotemporally coordinated. To a large degree, the morphological changes and physical forces that occur during migration are generated by a dynamic filamentous actin (F-actin) cytoskeleton. Adhesion is regulated by dynamic assemblies of structural and signaling proteins that couple the F-actin cytoskeleton to the extracellular matrix. Here, we review current knowledge of the dynamic organization of the F-actin cytoskeleton in cell migration and the regulation of focal adhesion assembly and disassembly with an emphasis on how mechanical and biochemical signaling between these two systems regulate the coordination of physical processes in cell migration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner.

              Using two-colour imaging and high resolution TIRF microscopy, we investigated the assembly and maturation of nascent adhesions in migrating cells. We show that nascent adhesions assemble and are stable within the lamellipodium. The assembly is independent of myosin II but its rate is proportional to the protrusion rate and requires actin polymerization. At the lamellipodium back, the nascent adhesions either disassemble or mature through growth and elongation. Maturation occurs along an alpha-actinin-actin template that elongates centripetally from nascent adhesions. Alpha-Actinin mediates the formation of the template and organization of adhesions associated with actin filaments, suggesting that actin crosslinking has a major role in this process. Adhesion maturation also requires myosin II. Rescue of a myosin IIA knockdown with an actin-bound but motor-inhibited mutant of myosin IIA shows that the actin crosslinking function of myosin II mediates initial adhesion maturation. From these studies, we have developed a model for adhesion assembly that clarifies the relative contributions of myosin II and actin polymerization and organization.
                Bookmark

                Author and article information

                Journal
                J Funct Biomater
                J Funct Biomater
                jfb
                Journal of Functional Biomaterials
                MDPI
                2079-4983
                09 August 2017
                September 2017
                : 8
                : 3
                : 34
                Affiliations
                [1 ]Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, 66123 Saarbrücken, Germany; c.kwon@ 123456kist-europe.de
                [2 ]Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Korea
                [3 ]Department of Biomedical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
                Author notes
                Author information
                https://orcid.org/0000-0003-2605-0922
                Article
                jfb-08-00034
                10.3390/jfb8030034
                5618285
                28792434
                d7c57937-c53a-4682-bb96-b0950b965fdb
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 July 2017
                : 02 August 2017
                Categories
                Article

                polydimethylsiloxane (pdms),micro-patterns,human lens epithelial cells (b-3),microgroove patterns,posterior capsular opacification (pco)

                Comments

                Comment on this article