135
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The identification of NOX4 as a major source of oxidative stress in stroke and demonstration of dramatic protection after stroke in mice by NOX4 deletion or NOX inhibition, opens up new avenues for treatment.

          Abstract

          Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 ( Nox4 −/−) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4 −/− mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.

          Author Summary

          Stroke is the second leading cause of death worldwide. Today, only one approved therapy exists—a drug that breaks down blood clots—the effectiveness of which is moderate, and it can only be used in about 10% of patients because of contraindications. New therapeutic strategies that are translatable to humans and more rigid thresholds of relevance in pre-clinical stroke models are needed. One candidate mechanism is oxidative stress, which is the damage caused by reactive oxygen species (ROS). Antioxidant approaches that specifically target ROS have thus far failed in clinical trials. For a more effective approach, we focus here on targeting ROS at its source by investigating an enzyme involved in generating ROS, known as NADPH oxidase type 4, or NOX4. We found that NOX4 causes oxidative stress and death of nerve cells after a stroke. Deletion of the NOX4-coding gene in mice, as well as inhibiting the ROS-generating activity of NOX with a pharmacological inhibitor, reduces brain damage and improves neurological function, even when given hours after a stroke. Importantly, neuroprotection was preserved in old male and female Nox4 −/− mice as well as in Nox4 −/− mice subjected to permanent ischemia. NOX4 thus represents a most promising new therapeutic target for reducing oxidative stress in general, and in brain injury due to stroke in particular.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish

          Barrier structures (e.g. epithelia around tissues, plasma membranes around cells) are required for internal homeostasis and protection from pathogens. Wound detection and healing represent a dormant morphogenetic program that can be rapidly executed to restore barrier integrity and tissue homeostasis. In animals, initial steps include recruitment of leukocytes to the site of injury across distances of hundreds of micrometers within minutes of wounding. The spatial signals that direct this immediate tissue response are unknown. Due to their fast diffusion and versatile biological activities, reactive oxygen species (ROS), including hydrogen peroxide (H2O2), are interesting candidates for wound-to-leukocyte signalling. We probed the role of H2O2 during the early events of wound responses in zebrafish larvae expressing a genetically encoded H2O2 sensor1. This reporter revealed a sustained rise in H2O2 concentration at the wound margin, starting ∼3 min after wounding and peaking at ∼20 min, which extended ∼100−200 μm into the tail fin epithelium as a decreasing concentration gradient. Using pharmacological and genetic inhibition, we show that this gradient is created by Dual oxidase (Duox), and that it is required for rapid recruitment of leukocytes to the wound. This is the first observation of a tissue-scale H2O2 pattern, and the first evidence that H2O2 signals to leukocytes in tissues, in addition to its known antiseptic role.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathobiology of ischaemic stroke: an integrated view.

            Brain injury following transient or permanent focal cerebral ischaemia (stroke) develops from a complex series of pathophysiological events that evolve in time and space. In this article, the relevance of excitotoxicity, peri-infarct depolarizations, inflammation and apoptosis to delayed mechanisms of damage within the peri-infarct zone or ischaemic penumbra are discussed. While focusing on potentially new avenues of treatment, the issue of why many clinical stroke trials have so far proved disappointing is addressed. This article provides a framework that can be used to generate testable hypotheses and treatment strategies that are linked to the appearance of specific pathophysiological events within the ischaemic brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of reproducible brain infarction by photochemically initiated thrombosis.

              We have used a photochemical reaction in vivo to induce reproducible thrombosis leading to cerebral infarction in rats. After the intravenous injection of rose bengal, a potent photosensitizing dye, an ischemic lesion was formed by irradiating the left parietal convexity of the exposed skull for 20 minutes with green light (560 nm) from a filtered xenon arc lamp. Animals were allowed to survive from 30 minutes to 15 days after irradiation. Early microscopic alterations within the irradiated zone included the formation of thrombotic plugs and adjacent red blood cell stasis within pial and parenchymal vessels. Scanning electron microscopy revealed frequent platelet aggregates adhering to the vascular endothelium, often resulting in vascular occlusion. Carbon-black brain perfusion demonstrated that occlusion of vascular channels progressed after irradiation and was complete within 4 hours. Histopathological examination at 1, 5, and 15 days revealed that the associated infarct evolved reproducibly through several characteristic stages, including a phase of massive macrophage infiltration. Although cerebral infarction in this model is initiated by thrombosis of small blood vessels, the fact that the main pathological features of stroke are consistently reproduced should permit its use in assessing treatment regimens. Further, the capability of producing infarction in preselected cortical regions may facilitate the study of behavioral, functional, and structural consequences of acute and chronic stroke.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                September 2010
                September 2010
                21 September 2010
                : 8
                : 9
                : e1000479
                Affiliations
                [1 ]Neurologische Klinik und Poliklinik, Universität Würzburg, Würzburg, Germany
                [2 ]Rudolf-Buchheim-Institut für Pharmakologie & Medizinische Klinik, Justus-Liebig-Universität, Gießen, Germany
                [3 ]Department of Pharmacology and Centre for Vascular Health, Monash University, Melbourne, Australia
                [4 ]Department of Pharmacology and Toxicology and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
                [5 ]National Stroke Research Institute, Florey Neuroscience Institutes, Melbourne, Australia
                [6 ]Baker IDI Heart and Diabetes Institute, Juvenile Diabetes Research Foundation (JDRF) International Center for Diabetic Complications Research, Melbourne, Australia
                [7 ]Abteilung Neurologie, Georg-August Universität Göttingen, Göttingen, Germany
                [8 ]Universitätsklinik Münster, Klinik und Poliklinik für Neurologie—Entzündliche Erkrankungen des Nervensystems und Neuroonkologie, Münster, Germany
                [9 ]Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
                [10 ]Friedrich-Baur-Institut an der Neurologischen Klinik, Klinikum der Ludwig-Maximilians-Universität München, München, Germany
                [11 ]Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
                [12 ]King's College London School of Medicine, The James Black Centre, Cardiovascular Division, London, United Kingdom
                University of Edinburgh, United Kingdom
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: CK AS MHdA KJD NW HHS. Performed the experiments: CK HG MEA EJ MM DB TS CG PK KB MKS AMH SGM GS SM AS LB VGD HF TK. Analyzed the data: CK MEA EJ MM DB LB VGD HF TK MHdA KJD NW HHHWS. Contributed reagents/materials/analysis tools: CK HG KW AMS HHHWS. Wrote the paper: CK KW HHHWS.

                Article
                10-PLBI-RA-6208R3
                10.1371/journal.pbio.1000479
                2943442
                20877715
                d7c6a213-ddbd-43e8-a2d8-00c127e1668a
                Kleinschnitz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 February 2010
                : 28 July 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Cardiovascular Disorders/Cardiovascular Pharmacology
                Genetics and Genomics/Gene Function
                Neurological Disorders/Cerebrovascular Disease
                Neurological Disorders/Neuropharmacology
                Non-Clinical Medicine/Research Methods
                Pharmacology/Drug Development
                Physiology/Cardiovascular Physiology and Circulation

                Life sciences
                Life sciences

                Comments

                Comment on this article