4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      COVID-19 Community Incidence and Associated Neighborhood-Level Characteristics in Houston, Texas, USA

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Central to developing effective control measures for the COVID-19 pandemic is understanding the epidemiology of transmission in the community. Geospatial analysis of neighborhood-level data could provide insight into drivers of infection. In the current analysis of Harris County, Texas, we used custom interpolation tools in GIS to disaggregate COVID-19 incidence estimates from the zip code to census tract estimates—a better representation of neighborhood-level estimates. We assessed the associations between 29 neighborhood-level characteristics and COVID-19 incidence using a series of aspatial and spatial models. The variables that maintained significant and positive associations with COVID-19 incidence in our final aspatial model and later represented in a geographically weighted regression model were the percentage of the Black/African American population, percentage of the foreign-born population, area derivation index (ADI), percentage of households with no vehicle, and percentage of people over 65 years old inside each census tract. Conversely, we observed negative and significant association with the percentage employed in education. Notably, the spatial models indicated that the impact of ADI was homogeneous across the study area, but other risk factors varied by neighborhood. The current findings could enhance decision making by local public health officials in responding to the COVID-19 pandemic. By understanding factors that drive community transmission, we can better target disease control measures.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          An interactive web-based dashboard to track COVID-19 in real time

          In December, 2019, a local outbreak of pneumonia of initially unknown cause was detected in Wuhan (Hubei, China), and was quickly determined to be caused by a novel coronavirus, 1 namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak has since spread to every province of mainland China as well as 27 other countries and regions, with more than 70 000 confirmed cases as of Feb 17, 2020. 2 In response to this ongoing public health emergency, we developed an online interactive dashboard, hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, Baltimore, MD, USA, to visualise and track reported cases of coronavirus disease 2019 (COVID-19) in real time. The dashboard, first shared publicly on Jan 22, illustrates the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries. It was developed to provide researchers, public health authorities, and the general public with a user-friendly tool to track the outbreak as it unfolds. All data collected and displayed are made freely available, initially through Google Sheets and now through a GitHub repository, along with the feature layers of the dashboard, which are now included in the Esri Living Atlas. The dashboard reports cases at the province level in China; at the city level in the USA, Australia, and Canada; and at the country level otherwise. During Jan 22–31, all data collection and processing were done manually, and updates were typically done twice a day, morning and night (US Eastern Time). As the outbreak evolved, the manual reporting process became unsustainable; therefore, on Feb 1, we adopted a semi-automated living data stream strategy. Our primary data source is DXY, an online platform run by members of the Chinese medical community, which aggregates local media and government reports to provide cumulative totals of COVID-19 cases in near real time at the province level in China and at the country level otherwise. Every 15 min, the cumulative case counts are updated from DXY for all provinces in China and for other affected countries and regions. For countries and regions outside mainland China (including Hong Kong, Macau, and Taiwan), we found DXY cumulative case counts to frequently lag behind other sources; we therefore manually update these case numbers throughout the day when new cases are identified. To identify new cases, we monitor various Twitter feeds, online news services, and direct communication sent through the dashboard. Before manually updating the dashboard, we confirm the case numbers with regional and local health departments, including the respective centres for disease control and prevention (CDC) of China, Taiwan, and Europe, the Hong Kong Department of Health, the Macau Government, and WHO, as well as city-level and state-level health authorities. For city-level case reports in the USA, Australia, and Canada, which we began reporting on Feb 1, we rely on the US CDC, the government of Canada, the Australian Government Department of Health, and various state or territory health authorities. All manual updates (for countries and regions outside mainland China) are coordinated by a team at Johns Hopkins University. The case data reported on the dashboard aligns with the daily Chinese CDC 3 and WHO situation reports 2 for within and outside of mainland China, respectively (figure ). Furthermore, the dashboard is particularly effective at capturing the timing of the first reported case of COVID-19 in new countries or regions (appendix). With the exception of Australia, Hong Kong, and Italy, the CSSE at Johns Hopkins University has reported newly infected countries ahead of WHO, with Hong Kong and Italy reported within hours of the corresponding WHO situation report. Figure Comparison of COVID-19 case reporting from different sources Daily cumulative case numbers (starting Jan 22, 2020) reported by the Johns Hopkins University Center for Systems Science and Engineering (CSSE), WHO situation reports, and the Chinese Center for Disease Control and Prevention (Chinese CDC) for within (A) and outside (B) mainland China. Given the popularity and impact of the dashboard to date, we plan to continue hosting and managing the tool throughout the entirety of the COVID-19 outbreak and to build out its capabilities to establish a standing tool to monitor and report on future outbreaks. We believe our efforts are crucial to help inform modelling efforts and control measures during the earliest stages of the outbreak.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The COVID-19 pandemic and health inequalities

            This essay examines the implications of the COVID-19 pandemic for health inequalities. It outlines historical and contemporary evidence of inequalities in pandemics—drawing on international research into the Spanish influenza pandemic of 1918, the H1N1 outbreak of 2009 and the emerging international estimates of socio-economic, ethnic and geographical inequalities in COVID-19 infection and mortality rates. It then examines how these inequalities in COVID-19 are related to existing inequalities in chronic diseases and the social determinants of health, arguing that we are experiencing a syndemic pandemic. It then explores the potential consequences for health inequalities of the lockdown measures implemented internationally as a response to the COVID-19 pandemic, focusing on the likely unequal impacts of the economic crisis. The essay concludes by reflecting on the longer-term public health policy responses needed to ensure that the COVID-19 pandemic does not increase health inequalities for future generations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neighborhoods and health.

              Features of neighborhoods or residential environments may affect health and contribute to social and race/ethnic inequalities in health. The study of neighborhood health effects has grown exponentially over the past 15 years. This chapter summarizes key work in this area with a particular focus on chronic disease outcomes (specifically obesity and related risk factors) and mental health (specifically depression and depressive symptoms). Empirical work is classified into two main eras: studies that use census proxies and studies that directly measure neighborhood attributes using a variety of approaches. Key conceptual and methodological challenges in studying neighborhood health effects are reviewed. Existing gaps in knowledge and promising new directions in the field are highlighted.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                04 February 2021
                February 2021
                : 18
                : 4
                : 1495
                Affiliations
                [1 ]Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; chris.amos@ 123456bcm.edu
                [2 ]Environmental Health Service, Department of Family and Community Medicine, Baylor College of Medicine, Houston, TX 77030, USA
                [3 ]Gulf Coast Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
                [4 ]National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; sm22@ 123456bcm.edu (S.M.G.); Lauren.Leining@ 123456bcm.edu (L.M.L.); kmurray@ 123456bcm.edu (K.O.M.)
                [5 ]Department of Pediatrics, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
                [6 ]William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
                [7 ]Division of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
                [8 ]Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
                Author notes
                [* ]Correspondence: oluyomi@ 123456bcm.edu
                [†]

                These authors contributed equally.

                Author information
                https://orcid.org/0000-0002-6603-6941
                https://orcid.org/0000-0002-0648-6828
                https://orcid.org/0000-0002-8540-7023
                Article
                ijerph-18-01495
                10.3390/ijerph18041495
                7915818
                33557439
                d7c89b07-13c8-4bf1-aec1-e38e03753420
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 December 2020
                : 30 January 2021
                Categories
                Article

                Public health
                covid-19,neighborhood inequity,geographic information system,social determinants of health,spatial epidemiology,geographically weighted regression

                Comments

                Comment on this article