8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Differential Vector Competency of Aedes albopictus Populations from the Americas for Zika Virus

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d6496164e501">To evaluate the potential role of <i>Aedes albopictu</i>s (Skuse) as a vector of Zika virus (ZIKV), colonized mosquitoes of low generation number (≤ F5) from Brazil, Houston, and the Rio Grande Valley of Texas engorged on viremic mice infected with ZIKV strains originating from Senegal, Cambodia, Mexico, Brazil, or Puerto Rico. Vector competence was established by monitoring infection, dissemination, and transmission potential after 3, 7, and 14 days of extrinsic incubation. Positive saliva samples were assayed for infectious titer. Although all three mosquito populations were susceptible to all ZIKV strains, rates of infection, dissemination, and transmission differed among mosquito and virus strains. <i>Aedes albopictus</i> from Salvador, Brazil, were the least efficient vectors, demonstrating susceptibility to infection to two American strains of ZIKV but failing to shed virus in saliva. Mosquitoes from the Rio Grande Valley were the most efficient vectors and were capable of shedding all three tested ZIKV strains into saliva after 14 days of extrinsic incubation. In particular, ZIKV strain DakAR 41525 (Senegal 1954) was significantly more efficient at dissemination and saliva deposition than the others tested in Rio Grande mosquitoes. Overall, our data indicate that, while <i>Ae. albopictus</i> is capable of transmitting ZIKV, its competence is potentially dependent on geographic origin of both the mosquito population and the viral strain. </p>

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          First report of autochthonous transmission of Zika virus in Brazil

          In the early 2015, several cases of patients presenting symptoms of mild fever, rash, conjunctivitis and arthralgia were reported in the northeastern Brazil. Although all patients lived in a dengue endemic area, molecular and serological diagnosis for dengue resulted negative. Chikungunya virus infection was also discarded. Subsequently, Zika virus (ZIKV) was detected by reverse transcription-polymerase chain reaction from the sera of eight patients and the result was confirmed by DNA sequencing. Phylogenetic analysis suggests that the ZIKV identified belongs to the Asian clade. This is the first report of ZIKV infection in Brazil.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Zika Virus Outside Africa

            In April 2007, an outbreak of illness characterized by rash, arthralgia, and conjunctivitis was reported on Yap Island in the Federated States of Micronesia. Serum samples from patients in the acute phase of illness contained RNA of Zika virus (ZIKV), a flavivirus in the same family as yellow fever, dengue, West Nile, and Japanese encephalitis viruses. These findings show that ZIKV has spread outside its usual geographic range ( 1 , 2 ). Sixty years earlier, on April 18, 1947, fever developed in a rhesus monkey that had been placed in a cage on a tree platform in the Zika Forest of Uganda ( 3 ). The monkey, Rhesus 766, was a sentinel animal in the Rockefeller Foundation’s program for research on jungle yellow fever. Two days later, Rhesus 766, still febrile, was brought to the Foundation’s laboratory at Entebbe and its serum was inoculated into mice. After 10 days all mice that were inoculated intracerebrally were sick, and a filterable transmissible agent, later named Zika virus, was isolated from the mouse brains. In early 1948, ZIKV was also isolated from Aedes africanus mosquitoes trapped in the same forest ( 4 ). Serologic studies indicated that humans could also be infected ( 5 ). Transmission of ZIKV by artificially fed Ae. aegypti mosquitoes to mice and a monkey in a laboratory was reported in 1956 ( 6 ). ZIKV was isolated from humans in Nigeria during studies conducted in 1968 and during 1971–1975; in 1 study, 40% of the persons tested had neutralizing antibody to ZIKV ( 7 – 9 ). Human isolates were obtained from febrile children 10 months, 2 years (2 cases), and 3 years of age, all without other clinical details described, and from a 10 year-old boy with fever, headache, and body pains ( 7 , 8 ). From 1951 through 1981, serologic evidence of human ZIKV infection was reported from other African countries such as Uganda, Tanzania, Egypt, Central African Republic, Sierra Leone ( 10 ), and Gabon, and in parts of Asia including India, Malaysia, the Philippines, Thailand, Vietnam, and Indonesia ( 10 – 14 ). In additional investigations, the virus was isolated from Ae. aegypti mosquitoes in Malaysia, a human in Senegal, and mosquitoes in Côte d’Ivoire ( 15 – 17 ). In 1981 Olson et al. reported 7 people with serologic evidence of ZIKV illness in Indonesia ( 11 ). A subsequent serologic study indicated that 9/71 (13%) human volunteers in Lombok, Indonesia, had neutralizing antibody to ZIKV ( 18 ). The outbreak on Yap Island in 2007 shows that ZIKV illness has been detected outside of Africa and Asia (Figure 1). Figure 1 Approximate known distribution of Zika virus, 1947–2007. Red circle represents Yap Island. Yellow indicates human serologic evidence; red indicates virus isolated from humans; green represents mosquito isolates. Dynamics of Transmission ZIKV has been isolated from Ae. africanus, Ae. apicoargenteus, Ae. luteocephalus, Ae. aegypti, Ae vitattus, and Ae. furcifer mosquitoes ( 9 , 15 , 17 , 19 ). Ae. hensilii was the predominant mosquito species present on Yap during the ZIKV disease outbreak in 2007, but investigators were unable to detect ZIKV in any mosquitoes on the island during the outbreak ( 2 ). Dick noted that Ae. africanus mosquitoes, which were abundant and infected with ZIKV in the Zika Forest, were not likely to enter monkey cages such as the one containing Rhesus 766 ( 5 ) raising the doubt that the monkey might have acquired ZIKV from some other mosquito species or through some other mechanism. During the studies of yellow fever in the Zika Forest, investigators had to begin tethering monkeys in trees because caged monkeys did not acquire yellow fever virus when the virus was present in mosquitoes ( 5 ). Thus, despite finding ZIKV in Ae. Africanus mosquitoes, Dick was not sure whether or not these mosquitoes were actually the vector for enzootic ZIKV transmission to monkeys. Boorman and Porterfield subsequently demonstrated transmission of ZIKV to mice and monkeys by Ae. aegypti in a laboratory ( 6 ). Virus content in the mosquitoes was high on the day of artificial feeding, dropped to undetectable levels through day 10 after feeding, had increased by day 15, and remained high from days 20 through 60 ( 6 ). Their study suggests that the extrinsic incubation period for ZIKV in mosquitoes is ≈10 days. The authors cautioned that their results did not conclusively demonstrate that Ae. aegypti mosquitoes could transmit ZIKV at lower levels of viremia than what might occur among host animals in natural settings. Nevertheless, their results, along with the viral isolations from wild mosquitoes and monkeys and the phylogenetic proximity of ZIKV to other mosquito-borne flaviviruses, make it reasonable to conclude that ZIKV is transmitted through mosquito bites. There is to date no solid evidence of nonprimate reservoirs of ZIKV, but 1 study did find antibody to ZIKV in rodents ( 20 ). Further laboratory, field, and epidemiologic studies would be useful to better define vector competence for ZIKV, to determine if there are any other arthropod vectors or reservoir hosts, and to evaluate the possibility of congenital infection or transmission through blood transfusion. Virology and Pathogenesis ZIKV is an RNA virus containing 10,794 nucleotides encoding 3,419 amino acids. It is closely related to Spondweni virus; the 2 viruses are the only members of their clade within the mosquito-borne cluster of flaviviruses (Figure 2) ( 1 , 21 , 22 ). The next nearest relatives include Ilheus, Rocio, and St. Louis encephalitis viruses; yellow fever virus is the prototype of the family, which also includes dengue, Japanese encephalitis, and West Nile viruses ( 1 , 21 ). Studies in the Zika Forest suggested that ZIKV infection blunted the viremia caused by yellow fever virus in monkeys but did not block transmission of yellow fever virus ( 19 , 23 ). Figure 2 Phylogenetic relationship of Zika virus to other flaviviruses based on nucleic acid sequence of nonstructural viral protein 5, with permission from Dr Robert Lanciotti ( 1 ). Enc, encephalitis; ME, meningoencephalitis. Information regarding pathogenesis of ZIKV is scarce but mosquito-borne flaviviruses are thought to replicate initially in dendritic cells near the site of inoculation then spread to lymph nodes and the bloodstream ( 24 ). Although flaviviral replication is thought to occur in cellular cytoplasm, 1 study suggested that ZIKV antigens could be found in infected cell nuclei ( 25 ). To date, infectious ZIKV has been detected in human blood as early as the day of illness onset; viral nucleic acid has been detected as late as 11 days after onset ( 1 , 26 ). The virus was isolated from the serum of a monkey 9 days after experimental inoculation ( 5 ). ZIKV is killed by potassium permanganate, ether, and temperatures >60°C, but it is not effectively neutralized with 10% ethanol ( 5 ). Clinical Manifestations The first well-documented report of human ZIKV disease was in 1964 when Simpson described his own occupationally acquired ZIKV illness at age 28 ( 27 ). It began with mild headache. The next day, a maculopapular rash covered his face, neck, trunk, and upper arms, and spread to his palms and soles. Transient fever, malaise, and back pain developed. By the evening of the second day of illness he was afebrile, the rash was fading, and he felt better. By day three, he felt well and had only the rash, which disappeared over the next 2 days. ZIKV was isolated from serum collected while he was febrile. In 1973, Filipe et al. reported laboratory-acquired ZIKV illness in a man with acute onset of fever, headache, and joint pain but no rash ( 26 ). ZIKV was isolated from serum collected on the first day of symptoms; the man’s illness resolved in ≈1 week. Of the 7 ZIKV case-patients in Indonesia described by Olson et al. all had fever, but they were detected by hospital-based surveillance for febrile illness ( 11 ). Other manifestations included anorexia, diarrhea, constipation, abdominal pain, and dizziness. One patient had conjunctivitis but none had rash. The outbreak on Yap Island was characterized by rash, conjunctivitis, and arthralgia ( 1 , 2 ). Other less frequent manifestations included myalgia, headache, retroorbital pain, edema, and vomiting ( 2 ). Diagnosis Diagnostic tests for ZIKV infection include PCR tests on acute-phase serum samples, which detect viral RNA, and other tests to detect specific antibody against ZIKV in serum. An ELISA has been developed at the Arboviral Diagnostic and Reference Laboratory of the Centers for Disease Control and Prevention (Ft. Collins, CO, USA) to detect immunoglobulin (Ig) M to ZIKV ( 1 ). In the samples from Yap Island, cross-reactive results in sera from convalescent-phase patients occurred more frequently among patients with evidence of previous flavivirus infections than among those with apparent primary ZIKV infections ( 1 , 2 ). Cross-reactivity was more frequently noted with dengue virus than with yellow fever, Japanese encephalitis, Murray Valley encephalitis, or West Nile viruses, but there were too few samples tested to derive robust estimates of the sensitivity and specificity of the ELISA. IgM was detectable as early as 3 days after onset of illness in some persons; 1 person with evidence of previous flavivirus infection had not developed IgM at day 5 but did have it by day 8 ( 1 ). Neutralizing antibody developed as early as 5 days after illness onset. The plaque reduction neutralization assay generally has improved specificity over immunoassays, but may still yield cross-reactive results in secondary flavivirus infections. PCR tests can be conducted on samples obtained less than 10 days after illness onset; 1 patient from Yap Island still had detectable viral RNA on day 11 ( 1 ). In general, diagnostic testing for flavivirus infections should include an acute-phase serum sample collected as early as possible after onset of illness and a second sample collected 2 to 3 weeks after the first. Public Health Implications Because the virus has spread outside Africa and Asia, ZIKV should be considered an emerging pathogen. Fortunately, ZIKV illness to date has been mild and self-limited, but before West Nile virus caused large outbreaks of neuroinvasive disease in Romania and in North America, it was also considered to be a relatively innocuous pathogen ( 28 ). The discovery of ZIKV on the physically isolated community of Yap Island is testimony to the potential for travel or commerce to spread the virus across large distances. A medical volunteer who was on Yap Island during the ZIKV disease outbreak became ill and was likely viremic with ZIKV after her return to the United States ( 2 ). The competence of mosquitoes in the Americas for ZIKV is not known and this question should be addressed. Spread of ZIKV across the Pacific could be difficult to detect because of the cross-reactivity of diagnostic flavivirus antibody assays. ZIKV disease could easily be confused with dengue and might contribute to illness during dengue outbreaks. Recognition of the spread of ZIKV and of the impact of ZIKV on human health will require collaboration between clinicians, public health officials, and high-quality reference laboratories. Given that the epidemiology of ZIKV transmission on Yap Island appeared to be similar to that of dengue, strategies for prevention and control of ZIKV disease should include promoting the use of insect repellent and interventions to reduce the abundance of potential mosquito vectors. Officials responsible for public health surveillance in the Pacific region and the United States should be alert to the potential spread of ZIKV and keep in mind the possible diagnostic confusion between ZIKV illness and dengue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus

              Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia. Methodology/Principal Findings Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132). Upon exposure, engorged mosquitoes were maintained at 28°±1°C, a 16h:8h light:dark cycle and 80% humidity. 25–30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level. Conclusions/Significance This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak.
                Bookmark

                Author and article information

                Journal
                The American Journal of Tropical Medicine and Hygiene
                American Society of Tropical Medicine and Hygiene
                0002-9637
                1476-1645
                August 02 2017
                August 02 2017
                : 97
                : 2
                : 330-339
                Article
                10.4269/ajtmh.16-0969
                5544086
                28829735
                d7de26b6-e7da-4ad5-8b2a-471f7b6fa204
                © 2017
                History

                Comments

                Comment on this article