40
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      BioAider: an efficient tool for viral genome analysis and its application in tracing SARS-CoV-2 transmission

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • BioAider is an efficient tool for high-throughput analysis of viral genomes.

          • BioAider monitors viral variation that facilitates epidemic control of COVID-19.

          • 14 substitution hotspots in SARS-CoV-2 genome indicates viral polymorphism.

          • NSP13-Y541C was found to be a crucial substitution key viral replication.

          • The unique SRXX repeats on N protein suggests the animal origin of SARS-CoV-2.

          Abstract

          The novel human coronavirus (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19) pandemic worldwide. Control of COVID-19 pandemic is vital for public health and is the prerequisite to maintain social stability. However, the origin and transmission route of SARS-CoV-2 is unclear, bringing huge difficult to virus control. Monitoring viral variation and screening functional mutation sites are crucial to prevention and control of infectious diseases. In this study, we developed a user-friendly software, named BioAider, for quick sequence annotation and mutation analysis on large-scale genome-sequencing data. Herein, we detected 14 substitution hotspots within 3,240 SARS-CoV-2 genome sequences, including 3 groups of potentially linked substitution. NSP13-Y541C was crucial substitution which might affect the unwinding activity of helicase. In particular, we discovered a SR-rich region of SARS-CoV-2 distinct from SARS-CoV, indicating more complex replication mechanism and unique N-M interaction of SARS-CoV-2. Interestingly, the quantity of SRXX repeat fragments in SARS-CoV-2 provided further evidence of its animal origin. Overall, we developed an efficient tool for rapid identification of viral genome mutations and could facilitate the viral genomic study. Using this tool, we have found critical clues for the transmission route of SARS-CoV-2 which would provide theoretical support for the epidemic control of pathogenic coronaviruses.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Novel Coronavirus from Patients with Pneumonia in China, 2019

            Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A pneumonia outbreak associated with a new coronavirus of probable bat origin

              Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
                Bookmark

                Author and article information

                Contributors
                Journal
                Sustain Cities Soc
                Sustain Cities Soc
                Sustainable Cities and Society
                Elsevier Ltd.
                2210-6707
                2210-6715
                28 August 2020
                28 August 2020
                : 102466
                Affiliations
                [a ]Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
                [b ]Department of Hospital Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
                Author notes
                [* ]Corresponding author at: College of Biology, Hunan University, 35 Tianma Road, Yuelu District, Changsha, Hunan, China. xyge@ 123456hnu.edu.cn
                [1]

                These authors contributed equally to this work.

                Article
                S2210-6707(20)30686-7 102466
                10.1016/j.scs.2020.102466
                7455202
                32904401
                d7e813db-bba4-41d3-961b-a2e5333c1b2c
                © 2020 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 21 July 2020
                : 23 August 2020
                : 26 August 2020
                Categories
                Article

                bioaider,sars-cov-2,covid-19,sustainable development,mutant hotspots,sr-rich region

                Comments

                Comment on this article