26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An improved mass budget for the Greenland ice sheet

      , , , , ,
      Geophysical Research Letters
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Partitioning recent Greenland mass loss.

            Mass budget calculations, validated with satellite gravity observations [from the Gravity Recovery and Climate Experiment (GRACE) satellites], enable us to quantify the individual components of recent Greenland mass loss. The total 2000-2008 mass loss of approximately 1500 gigatons, equivalent to 0.46 millimeters per year of global sea level rise, is equally split between surface processes (runoff and precipitation) and ice dynamics. Without the moderating effects of increased snowfall and refreezing, post-1996 Greenland ice sheet mass losses would have been 100% higher. Since 2006, high summer melt rates have increased Greenland ice sheet mass loss to 273 gigatons per year (0.75 millimeters per year of equivalent sea level rise). The seasonal cycle in surface mass balance fully accounts for detrended GRACE mass variations, confirming insignificant subannual variation in ice sheet discharge.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise

                Bookmark

                Author and article information

                Journal
                Geophysical Research Letters
                Geophys. Res. Lett.
                Wiley-Blackwell
                00948276
                February 16 2014
                February 16 2014
                : 41
                : 3
                : 866-872
                Article
                10.1002/2013GL059010
                d7efb86e-3bdb-4f48-9acf-a6d4b35bd29f
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article