7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stable Sulforaphane Targets the Early Stages of Osteoclast Formation to Engender a Lasting Functional Blockade of Osteoclastogenesis

      , ,
      Cells
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sulforaphane, the native but unstable form of SFX-01, is an antioxidant that activates the NRF2 and inhibits the NF-KB pathways to achieve its actions. Resolving the mechanism(s) by which SFX-01 serves to control the various osteoclastogenic stages may expose pathways that could be explored for therapeutic use. Here we seek to identify the stage of osteoclastogenesis targeted by SFX-01 and explore whether, like SFN, it exerts its actions via the NRF2 and NF-KB pathways. Osteoclasts generated from the bone marrow (BM) of mice were cultured with SFX-01 at different timepoints to examine each phase of osteoclastogenesis separately. This showed that SFX-01 exerted actions throughout the process of osteoclastogenesis, but had its largest effects in the early osteoclast precursor differentiation stage. Thus, treatment with SFX-01 for the duration of culture, for the initial 3 days differentiation or for as little as the first 24 h was sufficient for effective inhibition. This aligned with data suggesting that SFX-01 reduced DC-STAMP levels, osteoclast nuclear number and modified cytoskeletal architecture. Pharmacological regulation of the NRF2 pathways, via selective inhibitors/activators, supported the anti-osteoclastogenic roles of an SFX-01-mediated by NRF2 activation, as well as the need for tight NF-KB pathway regulation in osteoclast formation/function.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative stress in bone remodeling: role of antioxidants

          ROS are highly reactive molecules which consist of a number of diverse chemical species, including radical and non-radical oxygen species. Oxidative stress occurs as a result of an overproduction of ROS not balanced by an adequate level of antioxidants. The natural antioxidants are: thiol compounds among which GSH is the most representative, and non-thiol compounds such as polyphenols, vitamins and also various enzymes. Many diseases have been linked to oxidative stress including bone diseases among which one of the most important is the osteoporosis. The redox state changes are also related to the bone remodeling process which allows the continuous bone regeneration through the coordinated action of bone cells: osteoclasts, osteoblasts and osteocytes. Changes in ROS and/or antioxidant systems seem to be involved in the pathogenesis of bone loss. ROS induce the apoptosis of osteoblasts and osteocytes, and this favours osteoclastogenesis and inhibits the mineralization and osteogenesis. Excessive osteocyte apoptosis correlates with oxidative stress causing an imbalance in favor of osteoclastogenesis which leads to increased turnover of bone remodeling and bone loss. Antioxidants either directly or by counteracting the action of oxidants contribute to activate the differentiation of osteoblasts, mineralization process and the reduction of osteoclast activity. In fact, a marked decrease in plasma antioxidants was found in aged or osteoporotic women. Some evidence shows a link among nutrients, antioxidant intake and bone health. Recent data demonstrate the antioxidant properties of various nutrients and their influence on bone metabolism. Polyphenols and anthocyanins are the most abundant antioxidants in the diet, and nutritional approaches to antioxidant strategies, in animals or selected groups of patients with osteoporosis or inflammatory bone diseases, suggest the antioxidant use in anti-resorptive therapies for the treatment and prevention of bone loss.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis

            Artesunate, an anti-malarial drug, has been repurposed as an anticancer drug due to its induction of cell death via reactive oxygen species (ROS) production. However, the molecular mechanisms regulating cancer cell death and the resistance of cells to artesunate remain unclear. We investigated the molecular mechanisms behind the antitumor effects of artesunate and an approach to overcome artesunate resistance in head and neck cancer (HNC). The effects of artesunate and trigonelline were tested in different HNC cell lines, including three cisplatin-resistant HNC cell lines. The effects of these drugs as well as the inhibition of Keap1, Nrf2, and HO-1 were assessed by cell viability, cell death, glutathione (GSH) and ROS production, protein expression, and mouse tumor xenograft models. Artesunate selectively killed HNC cells but not normal cells. The artesunate sensitivity was relatively low in cisplatin-resistant HNC cells. Artesunate induced ferroptosis in HNC cells by decreasing cellular GSH levels and increasing lipid ROS levels. This effect was blocked by co-incubation with ferrostatin-1 and a trolox pretreatment. Artesunate activated the Nrf2–antioxidant response element (ARE) pathway in HNC cells, which contributed to ferroptosis resistance. The silencing of Keap1, a negative regulator of Nrf2, decreased artesunate sensitivity in HNC cells. Nrf2 genetic silencing or trigonelline reversed the ferroptosis resistance of Keap1-silenced and cisplatin-resistant HNC cells to artesunate in vitro and in vivo. Nrf2–ARE pathway activation contributes to the artesunate resistance of HNC cells, and inhibition of this pathway abolishes ferroptosis-resistant HNC. Condensed abstract Our results show the effectiveness and molecular mechanism of artesunate treatment on head and neck cancer (HNC). Artesunate selectively killed HNC cells but not normal cells by inducing an iron-dependent, ROS-accumulated ferroptosis. However, this effect may be suboptimal in some cisplatin-resistant HNCs because of Nrf2–antioxidant response element (ARE) pathway activation. Inhibition of the Nrf2–ARE pathway increased artesunate sensitivity and reversed the ferroptosis resistance in resistant HNC cells.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The chemical diversity and distribution of glucosinolates and isothiocyanates among plants

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CELLC6
                Cells
                Cells
                MDPI AG
                2073-4409
                January 2024
                January 16 2024
                : 13
                : 2
                : 165
                Article
                10.3390/cells13020165
                d7f5223b-b1b4-409a-9aca-c5c495048c0b
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article