21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mycotoxins and oxidative stress: where are we?

      1 , 1 , 2
      World Mycotoxin Journal
      Wageningen Academic Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references155

          • Record: found
          • Abstract: found
          • Article: not found

          The antioxidant properties of zinc.

          S R Powell (2000)
          The ability of zinc to retard oxidative processes has been recognized for many years. In general, the mechanism of antioxidation can be divided into acute and chronic effects. Chronic effects involve exposure of an organism to zinc on a long-term basis, resulting in induction of some other substance that is the ultimate antioxidant, such as the metallothioneins. Chronic zinc deprivation generally results in increased sensitivity to some oxidative stress. The acute effects involve two mechanisms: protection of protein sulfhydryls or reduction of (*)OH formation from H(2)O(2) through the antagonism of redox-active transition metals, such as iron and copper. Protection of protein sulfhydryl groups is thought to involve reduction of sulfhydryl reactivity through one of three mechanisms: (1) direct binding of zinc to the sulfhydryl, (2) steric hindrance as a result of binding to some other protein site in close proximity to the sulfhydryl group or (3) a conformational change from binding to some other site on the protein. Antagonism of redox-active, transition metal-catalyzed, site-specific reactions has led to the theory that zinc may be capable of reducing cellular injury that might have a component of site-specific oxidative damage, such as postischemic tissue damage. Zinc is capable of reducing postischemic injury to a variety of tissues and organs through a mechanism that might involve the antagonism of copper reactivity. Although the evidence for the antioxidant properties of zinc is compelling, the mechanisms are still unclear. Future research that probes these mechanisms could potentially develop new antioxidant functions and uses for zinc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological and physiological role of reactive oxygen species--the good, the bad and the ugly.

            Reactive oxygen species (ROS) are chemically reactive molecules that are naturally produced within biological systems. Research has focused extensively on revealing the multi-faceted and complex roles that ROS play in living tissues. In regard to the good side of ROS, this article explores the effects of ROS on signalling, immune response and other physiological responses. To review the potentially bad side of ROS, we explain the consequences of high concentrations of molecules that lead to the disruption of redox homeostasis, which induces oxidative stress damaging intracellular components. The ugly effects of ROS can be observed in devastating cardiac, pulmonary, neurodegenerative and other disorders. Furthermore, this article covers the regulatory enzymes that mitigate the effects of ROS. Glutathione peroxidase, superoxide dismutase and catalase are discussed in particular detail. The current understanding of ROS is incomplete, and it is imperative that future research be performed to understand the implications of ROS in various therapeutic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipid peroxidation-DNA damage by malondialdehyde.

              Malondialdehyde is a naturally occurring product of lipid peroxidation and prostaglandin biosynthesis that is mutagenic and carcinogenic. It reacts with DNA to form adducts to deoxyguanosine and deoxyadenosine. The major adduct to DNA is a pyrimidopurinone called M1G. Site-specific mutagenesis experiments indicate that M1G is mutagenic in bacteria and is repaired by the nucleotide excision repair pathway. M1G has been detected in liver, white blood cells, pancreas, and breast from healthy human beings at levels ranging from 1-120 per 108 nucleotides. Several different assays for M1G have been described that are based on mass spectrometry, 32P-postlabeling, or immunochemical techniques. Each technique offers advantages and disadvantages based on a combination of sensitivity and specificity. Application of each of these techniques to the analysis of M1G is reviewed and future needs for improvements are identified. M1G appears to be a major endogenous DNA adduct in human beings that may contribute significantly to cancer linked to lifestyle and dietary factors. High throughput methods for its detection and quantitation will be extremely useful for screening large populations. Copyright 1999 Elsevier Science B.V.
                Bookmark

                Author and article information

                Journal
                World Mycotoxin Journal
                World Mycotoxin Journal
                Wageningen Academic Publishers
                1875-0710
                1875-0796
                February 23 2018
                February 23 2018
                : 11
                : 1
                : 113-134
                Affiliations
                [1 ]Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
                [2 ]Université de Toulouse, Toxalim, Research Center in Food Toxicology, INRA, UMR 1331 ENVT, INP-PURPAN, 31076 Toulouse, France
                Article
                10.3920/WMJ2017.2267
                d7fb68f1-2e00-4a57-af63-e47c34bd0c0c
                © 2018
                History

                Comments

                Comment on this article