2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current advances in haploid stem cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diploidy is the typical genomic mode in all mammals. Haploid stem cells are artificial cell lines experimentally derived in vitro in the form of different types of stem cells, which combine the characteristics of haploidy with a broad developmental potential and open the possibility to uncover biological mysteries at a genomic scale. To date, a multitude of haploid stem cell types from mouse, rat, monkey and humans have been derived, as more are in development. They have been applied in high-throughput genetic screens and mammalian assisted reproduction. Here, we review the generation, unique properties and broad applications of these remarkable cells.

          Related collections

          Most cited references 73

          • Record: found
          • Abstract: found
          • Article: not found

          Haploid genetic screens in human cells identify host factors used by pathogens.

          Loss-of-function genetic screens in model organisms have elucidated numerous biological processes, but the diploid genome of mammalian cells has precluded large-scale gene disruption. We used insertional mutagenesis to develop a screening method to generate null alleles in a human cell line haploid for all chromosomes except chromosome 8. Using this approach, we identified host factors essential for infection with influenza and genes encoding important elements of the biosynthetic pathway of diphthamide, which are required for the cytotoxic effects of diphtheria toxin and exotoxin A. We also identified genes needed for the action of cytolethal distending toxin, including a cell-surface protein that interacts with the toxin. This approach has both conceptual and practical parallels with genetic approaches in haploid yeast.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint.

             T D Brito,  C Rieder (2006)
            In the presence of unattached/weakly attached kinetochores, the spindle assembly checkpoint (SAC) delays exit from mitosis by preventing the anaphase-promoting complex (APC)-mediated proteolysis of cyclin B, a regulatory subunit of cyclin-dependent kinase 1 (Cdk1). Like all checkpoints, the SAC does not arrest cells permanently, and escape from mitosis in the presence of an unsatisfied SAC requires that cyclin B/Cdk1 activity be inhibited. In yeast , and likely Drosophila, this occurs through an "adaptation" process involving an inhibitory phosphorylation on Cdk1 and/or activation of a cyclin-dependent kinase inhibitor (Cdki). The mechanism that allows vertebrate cells to escape mitosis when the SAC cannot be satisfied is unknown. To explore this issue, we conducted fluorescence microscopy studies on rat kangaroo (PtK) and human (RPE1) cells dividing in the presence of nocodazole. We find that in the absence of microtubules (MTs), escape from mitosis occurs in the presence of an active SAC and requires cyclin B destruction. We also find that cyclin B is progressively destroyed during the block by a proteasome-dependent mechanism. Thus, vertebrate cells do not adapt to the SAC. Rather, our data suggest that in normal cells, the SAC cannot prevent a slow but continuous degradation of cyclin B that ultimately drives the cell out of mitosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Examining the link between chromosomal instability and aneuploidy in human cells

              Solid tumors can be highly aneuploid and many display high rates of chromosome missegregation in a phenomenon called chromosomal instability (CIN). In principle, aneuploidy is the consequence of CIN, but the relationship between CIN and aneuploidy has not been clearly defined. In this study, we use live cell imaging and clonal cell analyses to evaluate the fidelity of chromosome segregation in chromosomally stable and unstable human cells. We show that improper microtubule–chromosome attachment (merotely) is a cause of chromosome missegregation in unstable cells and that increasing chromosome missegregation rates by elevating merotely during consecutive mitoses generates CIN in otherwise stable, near-diploid cells. However, chromosome missegregation compromises the proliferation of diploid cells, indicating that phenotypic changes that permit the propagation of nondiploid cells must combine with elevated chromosome missegregation rates to generate aneuploid cells with CIN.
                Bookmark

                Author and article information

                Contributors
                liwei@ioz.ac.cn
                Journal
                Protein Cell
                Protein Cell
                Protein & Cell
                Higher Education Press (Beijing )
                1674-800X
                1674-8018
                19 April 2019
                19 April 2019
                January 2020
                : 11
                : 1
                : 23-33
                Affiliations
                [1 ]GRID grid.9227.e, ISNI 0000000119573309, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, , Chinese Academy of Sciences, ; Beijing, 100101 China
                [2 ]GRID grid.9227.e, ISNI 0000000119573309, Institute for Stem Cell and Regeneration, , Chinese Academy of Sciences, ; Beijing, 100101 China
                [3 ]GRID grid.410726.6, ISNI 0000 0004 1797 8419, University of Chinese Academy of Sciences, ; Beijing, 100049 China
                Article
                625
                10.1007/s13238-019-0625-0
                6949308
                31004328
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                Comments

                Comment on this article