11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Crystal Retention in Renal Stone Disease: A Crucial Role for the Glycosaminoglycan Hyaluronan?

      Journal of the American Society of Nephrology
      American Society of Nephrology (ASN)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          The natural history of chronic allograft nephropathy.

          With improved immunosuppression and early allograft survival, chronic allograft nephropathy has become the dominant cause of kidney-transplant failure. We evaluated the natural history of chronic allograft nephropathy in a prospective study of 120 recipients with type 1 diabetes, all but 1 of whom had received kidney-pancreas transplants. We obtained 961 kidney-transplant-biopsy specimens taken regularly from the time of transplantation to 10 years thereafter. Two distinctive phases of injury were evident as chronic allograft nephropathy evolved. An initial phase of early tubulointerstitial damage from ischemic injury (P<0.05), prior severe rejection (P<0.01), and subclinical rejection (P<0.01) predicted mild disease by one year, which was present in 94.2 percent of patients. Early subclinical rejection was common (affecting 45.7 percent of biopsy specimens at three months), and the risk was increased by the occurrence of a prior episode of severe rejection and reduced by tacrolimus and mycophenolate therapy (both P<0.05) and gradually abated after one year. Both subclinical rejection and chronic rejection were associated with increased tubulointerstitial damage (P<0.01). Beyond one year, a later phase of chronic allograft nephropathy was characterized by microvascular and glomerular injury. Chronic rejection (defined as persistent subclinical rejection for two years or longer) was uncommon (5.8 percent). Progressive high-grade arteriolar hyalinosis with luminal narrowing, increasing glomerulosclerosis, and additional tubulointerstitial damage was accompanied by the use of calcineurin inhibitors. Nephrotoxicity, implicated in late ongoing injury, was almost universal at 10 years, even in grafts with excellent early histologic findings. By 10 years, severe chronic allograft nephropathy was present in 58.4 percent of patients, with sclerosis in 37.3 percent of glomeruli. Tubulointerstitial and glomerular damage, once established, was irreversible, resulting in declining renal function and graft failure. Chronic allograft nephropathy represents cumulative and incremental damage to nephrons from time-dependent immunologic and nonimmunologic causes. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme.

            We identified hyaluronan synthase-2 (Has2) as a likely source of hyaluronan (HA) during embryonic development, and we used gene targeting to study its function in vivo. Has2(-/-) embryos lack HA, exhibit severe cardiac and vascular abnormalities, and die during midgestation (E9.5-10). Heart explants from Has2(-/-) embryos lack the characteristic transformation of cardiac endothelial cells into mesenchyme, an essential developmental event that depends on receptor-mediated intracellular signaling. This defect is reproduced by expression of a dominant-negative Ras in wild-type heart explants, and is reversed in Has2(-/-) explants by gene rescue, by administering exogenous HA, or by expressing activated Ras. Conversely, transformation in Has2(-/-) explants mediated by exogenous HA is inhibited by dominant-negative Ras. Collectively, our results demonstrate the importance of HA in mammalian embryogenesis and the pivotal role of Has2 during mammalian development. They also reveal a previously unrecognized pathway for cell migration and invasion that is HA-dependent and involves Ras activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The six hyaluronidase-like genes in the human and mouse genomes.

              The human genome contains six hyaluronidase-like genes. Three genes (HYAL1, HYAL2 and HYAL3) are clustered on chromosome 3p21.3, and another two genes (HYAL4 and PH-20/SPAM1) and one expressed pseudogene (HYALP1) are similarly clustered on chromosome 7q31.3. The extensive homology between the different hyaluronidase genes suggests ancient gene duplication, followed by en masse block duplication, events that occurred before the emergence of modern mammals. Very recently we have found that the mouse genome also has six hyaluronidase-like genes that are also grouped into two clusters of three, in regions syntenic with the human genome. Surprisingly, the mouse ortholog of HYALP1 does not contain any mutations, and unlike its human counterpart may actually encode an active enzyme. Hyal-1 is the only hyaluronidase in mammalian plasma and urine, and is also found at high levels in major organs such as liver, kidney, spleen, and heart. A model is proposed suggesting that Hyal-2 and Hyal-1 are the major mammalian hyaluronidases in somatic tissues, and that they act in concert to degrade high molecular weight hyaluronan to the tetrasaccharide. Twenty-kDa hyaluronan fragments are generated at the cell surface in unique endocytic vesicles resulting from digestion by the glycosylphosphatidyl-inositol-anchored Hyal-2, transported intracellularly by an unknown process, and then further digested by Hyal-1. The two beta-exoglycosidases, beta-glucuronidase and beta-N-acetyl glucosaminidase, remove sugars from reducing termini of hyaluronan oligomers, and supplement the hyaluronidases in the catabolism of hyaluronan.
                Bookmark

                Author and article information

                Journal
                Journal of the American Society of Nephrology
                JASN
                American Society of Nephrology (ASN)
                1046-6673
                1533-3450
                May 23 2006
                June 2006
                June 2006
                May 17 2006
                : 17
                : 6
                : 1673-1687
                Article
                10.1681/ASN.2006010088
                d80adc06-4ff3-4499-bf62-3455d1dd63d2
                © 2006
                History

                Comments

                Comment on this article