68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The extended phenotype of autism spectrum disorders (ASD) includes a combination of arousal regulation problems, sensory modulation difficulties, and attention re-orienting deficit. A slow and inefficient re-orienting to stimuli that appear outside of the attended sensory stream is thought to be especially detrimental for social functioning. Event-related potentials (ERPs) and magnetic fields (ERFs) may help to reveal which processing stages underlying brain response to unattended but salient sensory event are affected in individuals with ASD. Previous research focusing on two sequential stages of the brain response—automatic detection of physical changes in auditory stream, indexed by mismatch negativity (MMN), and evaluation of stimulus novelty, indexed by P3a component,—found in individuals with ASD either increased, decreased, or normal processing of deviance and novelty. The review examines these apparently conflicting results, notes gaps in previous findings, and suggests a potentially unifying hypothesis relating the dampened responses to unattended sensory events to the deficit in rapid arousal process. Specifically, “sensory gating” studies focused on pre-attentive arousal consistently demonstrated that brain response to unattended and temporally novel sound in ASD is already affected at around 100 ms after stimulus onset. We hypothesize that abnormalities in nicotinic cholinergic arousal pathways, previously reported in individuals with ASD, may contribute to these ERP/ERF aberrations and result in attention re-orienting deficit. Such cholinergic dysfunction may be present in individuals with ASD early in life and can influence both sensory processing and attention re-orienting behavior. Identification of early neurophysiological biomarkers for cholinergic deficit would help to detect infants “at risk” who can potentially benefit from particular types of therapies or interventions.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          The mismatch negativity (MMN) in basic research of central auditory processing: a review.

          In the present article, the basic research using the mismatch negativity (MMN) and analogous results obtained by using the magnetoencephalography (MEG) and other brain-imaging technologies is reviewed. This response is elicited by any discriminable change in auditory stimulation but recent studies extended the notion of the MMN even to higher-order cognitive processes such as those involving grammar and semantic meaning. Moreover, MMN data also show the presence of automatic intelligent processes such as stimulus anticipation at the level of auditory cortex. In addition, the MMN enables one to establish the brain processes underlying the initiation of attention switch to, conscious perception of, sound change in an unattended stimulus stream.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian nicotinic acetylcholine receptors: from structure to function.

            The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a "receptive substance," from which the idea of a "receptor" came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of alpha-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer's, Parkinson's, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A cortical network for directed attention and unilateral neglect.

              Unilateral neglect reflects a disturbance in the spatial distribution of directed attention. A review of unilateral neglect syndromes in monkeys and humans suggests that four cerebral regions provide an integrated network for the modulation of directed attention within extrapersonal space. Each component region has a unique functional role that reflects its profile of anatomical connectivity, and each gives rise to a different clinical type of unilateral neglect when damaged. A posterior parietal component provides an internal sensory map and perhaps also a mechanism for modifying the extent of synaptic space devoted to specific portions of the external world; a limbic component in the cingulate gyrus regulates the spatial distribution of motivational valence; a frontal component coordinates the motor programs for exploration, scanning, reaching, and fixating; and a reticular component provides the underlying level of arousal and vigilance. This hypothetical network requires at least three complementary and interacting representations of extrapersonal space: a sensory representation in posterior parietal cortex, a schema for distributing exploratory movements in frontal cortex, and a motivational map in the cingulate cortex. Lesions in only one component of this network yield partial unilateral neglect syndromes, while those that encompass all the components result in profound deficits that transcend the mass effect of the larger lesion. This network approach to the localization of complex functions offers an alternative to more extreme approaches, some of which stress an exclusive concentration of function within individual centers in the brain and others which advocate a more uniform (equipotential or holistic) distribution. In human beings, unilateral neglect syndromes are more frequent and severe after lesions in the right hemisphere. Also, right hemisphere mechanisms appear more effective in the execution of attentional tasks. Furthermore, the attentional functions of the right hemisphere span both hemispaces, while the left hemisphere seems to contain the neural apparatus mostly for contralateral attention. This evidence indicates that the right hemisphere of dextrals has a functional specialization for the distribution of directed attention within extrapersonal space.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                06 February 2014
                2014
                : 8
                : 34
                Affiliations
                [1] 1MEG Centre, Moscow State University of Psychology and Education Moscow, Russia
                [2] 2MedTech West, Sahlgrenska Academy Gothenburg, Sweden
                Author notes

                Edited by: John J. Foxe, Albert Einstein College of Medicine, USA

                Reviewed by: Meng-Chuan Lai, University of Cambridge, UK; Edita Poljac, Radboud University Nijmegen, Netherlands; Helen Clery, Institut National de la Santé et de la Recherche Médicale, France

                *Correspondence: Elena V. Orekhova, MEG Centre, Moscow State University of Psychology and Education, Shelepihinskaja embankment 2a, 123290 Moscow, Russia e-mail: orekhova.elena.v@ 123456gmail.com

                This article was submitted to the journal Frontiers in Human Neuroscience.

                Article
                10.3389/fnhum.2014.00034
                3915101
                24567709
                d80ce1f2-073e-4861-be16-f7c0276b4ea9
                Copyright © 2014 Orekhova and Stroganova.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 November 2013
                : 17 January 2014
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 193, Pages: 17, Words: 17097
                Categories
                Neuroscience
                Hypothesis and Theory Article

                Neurosciences
                auditory event-related potentials,sensory modulation,nicotine,arousal,attention re-orienting,autism spectrum disorders (asd),cholinergic pathways

                Comments

                Comment on this article