30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detoxifying symbionts in agriculturally important pest insects

      review-article
      1 , 1 ,
      Microbial Biotechnology
      John Wiley and Sons Inc.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Pest insects lead to excessive agricultural and therefore economical losses on crops worldwide. These insects have to withstand toxic molecules that are inherent to plant defences, as well as those that are produced and introduced by humans in the form of insecticides. In recent years, research on insect–microbe symbioses has recognized that microbial symbionts may play a role protecting against these toxins, leading to a form of defensive symbiosis between the pest insect and different types of microorganisms that we term detoxifying symbioses. In this minireview, we will highlight well‐characterized and emerging insect model systems of detoxifying symbioses and assess how the microorganisms influence the host's success.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          The gut bacteria of insects: nonpathogenic interactions.

          The diversity of the Insecta is reflected in the large and varied microbial communities inhabiting the gut. Studies, particularly with termites and cockroaches, have focused on the nutritional contributions of gut bacteria in insects living on suboptimal diets. The indigenous gut bacteria, however, also play a role in withstanding the colonization of the gut by non-indigenous species including pathogens. Gut bacterial consortia adapt by the transfer of plasmids and transconjugation between bacterial strains, and some insect species provide ideal conditions for bacterial conjugation, which suggests that the gut is a "hot spot" for gene transfer. Genomic analysis provides new avenues for the study of the gut microbial community and will reveal the molecular foundations of the relationships between the insect and its microbiome. In this review the intestinal bacteria is discussed in the context of developing our understanding of symbiotic relationships, of multitrophic interactions between insects and plant or animal host, and in developing new strategies for controlling insect pests.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiorganismal insects: diversity and function of resident microorganisms.

            All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera.

              A Douglas (1998)
              Most aphids possess intracellular bacteria of the genus Buchnera. The bacteria are transmitted vertically via the aphid ovary, and the association is obligate for both partners: Bacteria-free aphids grow poorly and produce few or no offspring, and Buchnera are both unknown apart from aphids and apparently unculturable. The symbiosis has a nutritional basis. Specifically, bacterial provisioning of essential amino acids has been demonstrated. Nitrogen recycling, however, is not quantitatively important to the nutrition of aphid species studied, and there is strong evidence against bacterial involvement in the lipid and sterol nutrition of aphids. Buchnera have been implicated in various non-nutritional functions. Of these, just one has strong experimental support: promotion of aphid transmission of circulative viruses. It is argued that strong parallels may exist between the nutritional interactions (including the underlying mechanisms) in the aphid-Buchnera association and other insect symbioses with intracellular microorganisms.
                Bookmark

                Author and article information

                Contributors
                c.welte@science.ru.nl
                Journal
                Microb Biotechnol
                Microb Biotechnol
                10.1111/(ISSN)1751-7915
                MBT2
                Microbial Biotechnology
                John Wiley and Sons Inc. (Hoboken )
                1751-7915
                12 December 2016
                May 2017
                : 10
                : 3 ( doiID: 10.1111/mbt2.2017.10.issue-3 )
                : 531-540
                Affiliations
                [ 1 ] Department of Microbiology Institute for Water and Wetland ResearchRadboud University Heyendaalseweg 135 6525 AJ NijmegenThe Netherlands
                Author notes
                [*] [* ]For correspondence. *E‐mail c.welte@ 123456science.ru.nl ; Tel. 0031 24 3652952.
                Article
                MBT212483
                10.1111/1751-7915.12483
                5404199
                27943632
                d81994e2-dd74-4c7a-9466-b84bdcf85fb4
                © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 June 2016
                : 07 November 2016
                : 10 November 2016
                Page count
                Figures: 1, Tables: 0, Pages: 10, Words: 7621
                Funding
                Funded by: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
                Award ID: 024.002.002
                Categories
                Minireview
                Minireview
                Custom metadata
                2.0
                mbt212483
                May 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.0.9 mode:remove_FC converted:25.04.2017

                Biotechnology
                Biotechnology

                Comments

                Comment on this article