16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Branching Cascades: A Concise Synthetic Strategy Targeting Diverse and Complex Molecular Frameworks

      , , , ,
      Angewandte Chemie International Edition
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Asymmetric organocatalytic domino reactions.

          The current status of organic synthesis is hampered by costly protecting-group strategies and lengthy purification procedures after each synthetic step. To circumvent these problems, the synthetic potential of multicomponent domino reactions has been utilized for the efficient and stereoselective construction of complex molecules from simple precursors in a single process. In particular, domino reactions mediated by organocatalysts are in a way biomimetic, as this principle is used very efficiently in the biosynthesis of complex natural products starting from simple precursors. In this Minireview, we discuss the current development of this fast-growing field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A planning strategy for diversity-oriented synthesis.

            In contrast to target-oriented synthesis (TOS) and medicinal or combinatorial chemistry, which aim to access precise or dense regions of chemistry space, diversity-oriented synthesis (DOS) populates chemical space broadly with small-molecules having diverse structures. The goals of DOS include the development of pathways leading to the efficient (three- to five-step) synthesis of collections of small molecules having skeletal and stereochemical diversity with defined coordinates in chemical space. Ideally, these pathways also yield compounds having the potential to attach appendages site- and stereoselectively to a variety of attachment sites during a post-screening, maturation stage. The diverse skeletons and stereochemistries ensure that the appendages can be positioned in multiple orientations about the surface of the molecules. TOS as well as medicinal and combinatorial chemistries have been advanced by the development of retrosynthetic analysis. Although the distinct goals of DOS do not permit the application of retrosynthetic concepts and thinking, these foundations are being built on, by using parallel logic, to develop a complementary procedure known as forward-synthetic analysis. This analysis facilitates synthetic planning, communication, and teaching in this evolving discipline.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Navigating chemical space for biology and medicine.

              Despite over a century of applying organic synthesis to the search for drugs, we are still far from even a cursory examination of the vast number of possible small molecules that could be created. Indeed, a thorough examination of all 'chemical space' is practically impossible. Given this, what are the best strategies for identifying small molecules that modulate biological targets? And how might such strategies differ, depending on whether the primary goal is to understand biological systems or to develop potential drugs?
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                14337851
                July 18 2011
                July 18 2011
                : 50
                : 30
                : 6900-6905
                Article
                10.1002/anie.201102440
                d81a7961-b31f-4c98-a417-978734ab88ac
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article