+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytokine production capabilities of human primary monocyte-derived macrophages from patients with diabetes mellitus type 2 with and without diabetic peripheral neuropathy

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Monocytes from patients with diabetes mellitus type 2 (DM2) are dysfunctional, persistently primed, and prone to a proinflammatory phenotype. This may alter the phenotype of their differentiation to macrophages and result in diabetic peripheral neuropathy (DPN), nerve damage, nerve sensitization, and chronic pain. We have previously demonstrated that CD163 is a molecule that promotes an anti-inflammatory cellular phenotype in human primary macrophages, but this has not been proven in macrophages from patients with DM2 or DPN. Thus, we hypothesize that macrophages from patients with DM2 or DPN display an altered proinflammatory functional phenotype related to cytokine production and that the induction of CD163 expression will promote a more homeostatic phenotype by reducing their proinflammatory responsiveness.

          Patients and methods

          We tested these hypotheses in vitro using blood monocyte-derived macrophages from healthy subjects and patients with DM2 with and without DPN. Cells were incubated in the presence or the absence of 5 µg/mL of lipopolysaccharide (LPS). The concentrations of interleukin-10, interleukin-6, tumor necrosis factor-alpha (TNF-α), TGF-β, and monocyte chemoattractant protein-1 (MCP-1) were measured using ELISA assays. Macrophages were transfected with an empty vector plasmid or a plasmid containing the CD163 gene using mannosylated polyethylenimine nanoparticles.


          Our results show that nonstimulated DM2 or DPN macrophages have a constitutive primed proinflammatory state and display a deficient production of proinflammatory cytokines upon a proinflammatory challenge when compared to healthy macrophages. CD163 induction produced an anti-inflammatory phenotype in the healthy control group, and this effect was partial in DM2 or DPN macrophages.


          Our results suggest that diabetic macrophages adopt a complex phenotype that is only partially reversed by CD163 induction. Future experiments are focused on elucidating this differential responsiveness between healthy and diabetic macrophages.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study.

          A subclinical inflammatory reaction has been shown to precede the onset of type 2 (non-insulin-dependent) diabetes. We therefore examined prospectively the effects of the central inflammatory cytokines interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha (TNF-alpha) on the development of type 2 diabetes. We designed a nested case-control study within the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study including 27,548 individuals. Case subjects were defined to be those who were free of type 2 diabetes at baseline and subsequently developed type 2 diabetes during a 2.3-year follow-up period. A total of 192 cases of incident type 2 diabetes were identified and matched with 384 non-disease-developing control subjects. IL-6 and TNF-alpha levels were found to be elevated in participants with incident type 2 diabetes, whereas IL-1beta plasma levels did not differ between the groups. Analysis of single cytokines revealed IL-6 as an independent predictor of type 2 diabetes after adjustment for age, sex, BMI, waist-to-hip ratio (WHR), sports, smoking status, educational attainment, alcohol consumption, and HbA(1c) (4th vs. the 1st quartile: odds ratio [OR] 2.6, 95% CI 1.2-5.5). The association between TNF-alpha and future type 2 diabetes was no longer significant after adjustment for BMI or WHR. Interestingly, combined analysis of the cytokines revealed a significant interaction between IL-1beta and IL-6. In the fully adjusted model, participants with detectable levels of IL-1beta and elevated levels of IL-6 had an independently increased risk to develop type 2 diabetes (3.3, 1.7-6.8), whereas individuals with increased concentrations of IL-6 but undetectable levels of IL-1beta had no significantly increased risk, both compared with the low-level reference group. These results were confirmed in an analysis including only individuals with HbA(1c) <5.8% at baseline. Our data suggest that the pattern of circulating inflammatory cytokines modifies the risk for type 2 diabetes. In particular, a combined elevation of IL-1beta and IL-6, rather than the isolated elevation of IL-6 alone, independently increases the risk of type 2 diabetes. These data strongly support the hypothesis that a subclinical inflammatory reaction has a role in the pathogenesis of type 2 diabetes.
            • Record: found
            • Abstract: found
            • Article: not found

            Biology of interleukin-10.

            Interleukin (IL)-10 is the most important cytokine with anti-inflammatory properties besides TGF-β and IL-35. It is produced by activated immune cells, in particular monocytes/macrophages and T cell subsets including Tr1, Treg, and Th1 cells. IL-10 acts through a transmembrane receptor complex, which is composed of IL-10R1 and IL-10R2, and regulates the functions of many different immune cells. In monocytes/macrophages, IL-10 diminishes the production of inflammatory mediators and inhibits antigen presentation, although it enhances their uptake of antigens. Additionally, IL-10 plays an important role in the biology of B cells and T cells. The special physiological relevance of this cytokine lies in the prevention and limitation of over-whelming specific and unspecific immune reactions and, in consequence, of tissue damage. At the same time, IL-10 strengthens the "scavenger"-function and contributes to induced tolerance. This review provides an overview about the cellular sources, molecular mechanisms, effects, and biological role of IL-10. Copyright © 2010 Elsevier Ltd. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Increased number of islet-associated macrophages in type 2 diabetes.

              Activation of the innate immune system in obesity is a risk factor for the development of type 2 diabetes. The aim of the current study was to investigate the notion that increased numbers of macrophages exist in the islets of type 2 diabetes patients and that this may be explained by a dysregulation of islet-derived inflammatory factors. Increased islet-associated immune cells were observed in human type 2 diabetic patients, high-fat-fed C57BL/6J mice, the GK rat, and the db/db mouse. When cultured islets were exposed to a type 2 diabetic milieu or when islets were isolated from high-fat-fed mice, increased islet-derived inflammatory factors were produced and released, including interleukin (IL)-6, IL-8, chemokine KC, granulocyte colony-stimulating factor, and macrophage inflammatory protein 1alpha. The specificity of this response was investigated by direct comparison to nonislet pancreatic tissue and beta-cell lines and was not mimicked by the induction of islet cell death. Further, this inflammatory response was found to be biologically functional, as conditioned medium from human islets exposed to a type 2 diabetic milieu could induce increased migration of monocytes and neutrophils. This migration was blocked by IL-8 neutralization, and IL-8 was localized to the human pancreatic alpha-cell. Therefore, islet-derived inflammatory factors are regulated by a type 2 diabetic milieu and may contribute to the macrophage infiltration of pancreatic islets that we observe in type 2 diabetes.

                Author and article information

                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                19 December 2018
                : 12
                : 69-81
                [1 ]Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
                [2 ]Department of Pharmacy Practice, Presbyterian College School of Pharmacy, Clinton, SC, USA
                [3 ]Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, NC, USA, earomero.sandoval@ 123456gmail.com
                Author notes
                Correspondence: Edgar Alfonso Romero-Sandoval, Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA, Email earomero.sandoval@ 123456gmail.com
                © 2019 Alvarado-Vázquez et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research

                Anesthesiology & Pain management

                lps, primary human macrophages, transfection, cd163


                Comment on this article