19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of survival and hatching transcriptomes from potato cyst nematodes, Globodera rostochiensis and G. pallida

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Potato cyst nematodes (PCNs), Globodera rostochiensis and G. pallida, cause important economic losses. They are hard to manage because of their ability to remain dormant in soil for many years. Although general knowledge about these plant parasitic nematodes has considerably increased over the past decades, very little is known about molecular events involved in cyst dormancy and hatching, two key steps of their development. Here, we have studied the progression of PCN transcriptomes from dry cysts to hatched juveniles using RNA-Seq. We found that several cell detoxification-related genes were highly active in the dry cysts. Many genes linked to an increase of calcium and water uptake were up-regulated during transition from dormancy to hydration. Exposure of hydrated cysts to host plant root exudates resulted in different transcriptional response between species. After 48 h of exposure, G. pallida cysts showed no significant modulation of gene expression while G. rostochiensis had 278 differentially expressed genes. The first G. rostochiensis significantly up-regulated gene was observed after 8 h and was coding for a transmembrane metalloprotease. This enzyme is able to activate/inactivate peptide hormones and could be involved in a cascade of events leading to hatching. Several known effector genes were also up-regulated during hatching.

          Related collections

          Most cited references 65

          • Record: found
          • Abstract: found
          • Article: not found

          The free radical theory of aging matures.

           K Beckman,  James Ames (1998)
          The free radical theory of aging, conceived in 1956, has turned 40 and is rapidly attracting the interest of the mainstream of biological research. From its origins in radiation biology, through a decade or so of dormancy and two decades of steady phenomenological research, it has attracted an increasing number of scientists from an expanding circle of fields. During the past decade, several lines of evidence have convinced a number of scientists that oxidants play an important role in aging. (For the sake of simplicity, we use the term oxidant to refer to all "reactive oxygen species," including O2-., H2O2, and .OH, even though the former often acts as a reductant and produces oxidants indirectly.) The pace and scope of research in the last few years have been particularly impressive and diverse. The only disadvantage of the current intellectual ferment is the difficulty in digesting the literature. Therefore, we have systematically reviewed the status of the free radical theory, by categorizing the literature in terms of the various types of experiments that have been performed. These include phenomenological measurements of age-associated oxidative stress, interspecies comparisons, dietary restriction, the manipulation of metabolic activity and oxygen tension, treatment with dietary and pharmacological antioxidants, in vitro senescence, classical and population genetics, molecular genetics, transgenic organisms, the study of human diseases of aging, epidemiological studies, and the ongoing elucidation of the role of active oxygen in biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comprehensive algorithm for quantitative real-time polymerase chain reaction.

            Quantitative real-time polymerase chain reactions (qRT-PCR) have become the method of choice for rapid, sensitive, quantitative comparison of RNA transcript abundance. Useful data from this method depend on fitting data to theoretical curves that allow computation of mRNA levels. Calculating accurate mRNA levels requires important parameters such as reaction efficiency and the fractional cycle number at threshold (CT) to be used; however, many algorithms currently in use estimate these important parameters. Here we describe an objective method for quantifying qRT-PCR results using calculations based on the kinetics of individual PCR reactions without the need of the standard curve, independent of any assumptions or subjective judgments which allow direct calculation of efficiency and CT. We use a four-parameter logistic model to fit the raw fluorescence data as a function of PCR cycles to identify the exponential phase of the reaction. Next, we use a three-parameter simple exponent model to fit the exponential phase using an iterative nonlinear regression algorithm. Within the exponential portion of the curve, our technique automatically identifies candidate regression values using the P-value of regression and then uses a weighted average to compute a final efficiency for quantification. For CT determination, we chose the first positive second derivative maximum from the logistic model. This algorithm provides an objective and noise-resistant method for quantification of qRT-PCR results that is independent of the specific equipment used to perform PCR reactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Guanylyl cyclases and signaling by cyclic GMP.

              Guanylyl cyclases are a family of enzymes that catalyze the conversion of GTP to cGMP. The family comprises both membrane-bound and soluble isoforms that are expressed in nearly all cell types. They are regulated by diverse extracellular agonists that include peptide hormones, bacterial toxins, and free radicals, as well as intracellular molecules, such as calcium and adenine nucleotides. Stimulation of guanylyl cyclases and the resultant accumulation of cGMP regulates complex signaling cascades through immediate downstream effectors, including cGMP-dependent protein kinases, cGMP-regulated phosphodiesterases, and cyclic nucleotide-gated ion channels. Guanylyl cyclases and cGMP-mediated signaling cascades play a central role in the regulation of diverse (patho)physiological processes, including vascular smooth muscle motility, intestinal fluid and electrolyte homeostasis, and retinal phototransduction. Topics addressed in this review include the structure and chromosomal localization of the genes for guanylyl cyclases, structure and function of the members of the guanylyl cyclase family, molecular mechanisms regulating enzymatic activity, and molecular sequences coupling ligand binding to catalytic activity. A brief overview is presented of the downstream events controlled by guanylyl cyclases, including the effectors that are regulated by cGMP and the role that guanylyl cyclases play in cell physiology and pathophysiology.
                Bookmark

                Author and article information

                Contributors
                benjamin.mimee@agr.gc.ca
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 June 2017
                20 June 2017
                2017
                : 7
                Affiliations
                [1 ]ISNI 0000 0001 1302 4958, GRID grid.55614.33, , Agriculture and Agri-Food Canada, ; 430, Boulevard Gouin Saint-Jean-sur-Richelieu (Québec), J3B 3E6 Québec, Canada
                [2 ]ISNI 0000 0000 9064 6198, GRID grid.86715.3d, Département de Biologie, , Université de Sherbrooke, ; Sherbrooke, J1K 2R1 Canada
                [3 ]ISNI 0000 0001 1014 6626, GRID grid.43641.34, Cell and Molecular Sciences, , The James Hutton Institute, Invergowrie, ; Dundee, DD2 5DA United Kingdom
                [4 ]Canadian Food Inspection Agency, Ottawa Laboratory Fallowfield (OLF), 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9 Canada
                [5 ]ISNI 0000 0001 2183 4846, GRID grid.4711.3, Institute for Sustainable Agriculture (IAS), , Spanish National Research Council (CSIC), ; Avenida Menéndez Pidal s/n, 14004 Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3 Spain
                Article
                3871
                10.1038/s41598-017-03871-x
                5478601
                28634407
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized

                Comments

                Comment on this article