9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dos and Don’ts for butterflies of the Habitats Directive of the European Union

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Twenty-nine butterfly species are listed on the Annexes of the Habitats Directive. To assist everyone who wants or needs to take action for one of these species, we compiled an overview of the habitat requirements and ecology of each species, as well as information on their conservation status in Europe. This was taken from the recent Red List and their main biogeographical regions (taken from the first reporting on Article 17 of the Directive). Most important are the Dos and Don`ts, which summarize in a few bullet points what to do and what to avoid in order to protect and conserve these butterflies and their habitats.

          Related collections

          Most cited references 90

          • Record: found
          • Abstract: found
          • Article: not found

          Successful conservation of a threatened Maculinea butterfly.

          Globally threatened butterflies have prompted research-based approaches to insect conservation. Here, we describe the reversal of the decline of Maculinea arion (Large Blue), a charismatic specialist whose larvae parasitize Myrmica ant societies. M. arion larvae were more specialized than had previously been recognized, being adapted to a single host-ant species that inhabits a narrow niche in grassland. Inconspicuous changes in grazing and vegetation structure caused host ants to be replaced by similar but unsuitable congeners, explaining the extinction of European Maculinea populations. Once this problem was identified, UK ecosystems were perturbed appropriately, validating models predicting the recovery and subsequent dynamics of the butterfly and ants at 78 sites. The successful identification and reversal of the problem provides a paradigm for other insect conservation projects.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The importance of calcareous grasslands for butterflies in Europe

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Minimum viable metapopulation size, extinction debt, and the conservation of a declining species.

              A key question facing conservation biologists is whether declines in species' distributions are keeping pace with landscape change, or whether current distributions overestimate probabilities of future persistence. We use metapopulations of the marsh fritillary butterfly Euphydryas aurinia in the United Kingdom as a model system to test for extinction debt in a declining species. We derive parameters for a metapopulation model (incidence function model, IFM) using information from a 625-km2 landscape where habitat patch occupancy, colonization, and extinction rates for E. aurinia depend on patch connectivity, area, and quality. We then show that habitat networks in six extant metapopulations in 16-km2 squares were larger, had longer modeled persistence times (using IFM), and higher metapopulation capacity (lambdaM) than six extinct metapopulations. However, there was a > 99% chance that one or more of the six extant metapopulations would go extinct in 100 years in the absence of further habitat loss. For 11 out of 12 networks, minimum areas of habitat needed for 95% persistence of metapopulation simulations after 100 years ranged from 80 to 142 ha (approximately 5-9% of land area), depending on the spatial location of habitat. The area of habitat exceeded the estimated minimum viable metapopulation size (MVM) in only two of the six extant metapopulations, and even then by only 20%. The remaining four extant networks were expected to suffer extinction in 15-126 years. MVM was consistently estimated as approximately 5% of land area based on a sensitivity analysis of IFM parameters and was reduced only marginally (to approximately 4%) by modeling the potential impact of long-distance colonization over wider landscapes. The results suggest a widespread extinction debt among extant metapopulations of a declining species, necessitating conservation management or reserve designation even in apparent strongholds. For threatened species, metapopulation modeling is a potential means to identify landscapes near to extinction thresholds, to which conservation measures can be targeted for the best chance of success.
                Bookmark

                Author and article information

                Journal
                Nature Conservation
                NC
                Pensoft Publishers
                1314-3301
                1314-6947
                March 14 2012
                March 14 2012
                : 1
                : 73-153
                Article
                10.3897/natureconservation.1.2786
                © 2012

                Comments

                Comment on this article