30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrin α6A splice variant regulates proliferation and the Wnt/β-catenin pathway in human colorectal cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Integrin α6Aβ4 is up-regulated in colorectal cancers. Knockdown of α6A in adenocarcinoma cell lines revealed a sustained reduction of cell growth both in cellulo and in xenografts as well as a repression of a number of Wnt/β-catenin pathway end points.

          Abstract

          The integrin α6 subunit pre-messenger RNA undergoes alternative splicing to generate two different splice variants, named α6A and α6B, having distinct cytoplasmic domains. In the human colonic gland, these splice variants display different patterns of expression suggesting specific functions for each variant. We have previously found an up-regulation of the α6β4 integrin in colon adenocarcinomas as well as an increase in the α6A/α6B ratio, but little is known about the involvement of α6Aβ4 versus α6Bβ4 in this context. The aim of this study was to elucidate the function of the α6Aβ4 integrin in human colorectal cancer (CRC) cells. Expression studies on a panel of primary CRCs confirmed that the up-regulation of the α6 subunit in CRC is a direct consequence of the increase of the α6A variant. To investigate the functional significance of an α6A up-regulation in CRC, we specifically knocked down its expression in well-established CRC cell lines using a small-hairpin RNA approach. Results showed a growth rate reduction in all α6A knockdown CRC cell lines studied. The α6A silencing was also found to be associated with a significant repression of a number of Wnt/β-catenin pathway end points. Moreover, it was accompanied by a reduction in the capacity of these cells to develop tumours in xenografts. Taken together, these results demonstrate that the α6A variant is a pro-proliferative form of the α6 integrin subunit in CRC cells and appears to mediate its effects through the Wnt/β-catenin pathway.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Dishevelled: The hub of Wnt signaling.

          Wnt signaling controls a variety of developmental and homeostatic events. As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) protein relays Wnt signals from receptors to downstream effectors. In the canonical Wnt pathway that depends on the nuclear translocation of beta-catenin, Dvl is recruited by the receptor Frizzled and prevents the constitutive destruction of cytosolic beta-catenin. In the non-canonical Wnt pathways such as Wnt-Frizzled/PCP (planar cell polarity) signaling, Dvl signals via the Daam1-RhoA axis and the Rac1 axis. In addition, Dvl plays important roles in Wnt-GSK3beta-microtubule signaling, Wnt-calcium signaling, Wnt-RYK signaling, Wnt-atypical PKC signaling, etc. Dvl also functions to mediate receptor endocytosis. To fulfill its multifaceted functions, it is not surprising that Dvl associates with various kinds of proteins. Its activity is also modulated dynamically by phosphorylation, ubiquitination and degradation. In this review, we summarize the current understanding of Dvl functions in Wnt signal transduction and its biological functions in mouse development, and also discuss the molecular mechanisms of its actions. 2009 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrin alpha 6 regulates glioblastoma stem cells.

            Cancer stem cells (CSCs) are a subpopulation of tumor cells suggested to be critical for tumor maintenance, metastasis, and therapeutic resistance. Prospective identification and targeting of CSCs are therefore priorities for the development of novel therapeutic paradigms. Although CSC enrichment has been achieved with cell surface proteins including CD133 (Prominin-1), the roles of current CSC markers in tumor maintenance remain unclear. We examined the glioblastoma stem cell (GSC) perivascular microenvironment in patient specimens to identify enrichment markers with a functional significance and identified integrin alpha6 as a candidate. Integrin alpha6 is coexpressed with conventional GSC markers and enriches for GSCs. Targeting integrin alpha6 in GSCs inhibits self-renewal, proliferation, and tumor formation capacity. Our results provide evidence that GSCs express high levels of integrin alpha6, which can serve not only as an enrichment marker but also as a promising antiglioblastoma therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Intestinal Wnt/TCF Signature.

              In colorectal cancer, activating mutations in the Wnt pathway transform epithelial cells through the inappropriate expression of a TCF4 target gene program, which is physiologically expressed in intestinal crypts. We have now performed an exhaustive array-based analysis of this target gene program in colorectal cancer cell lines carrying an inducible block of the Wnt cascade. Independently, differential gene-expression profiles of human adenomas and adenocarcinomas vs normal colonic epithelium were obtained. Expression analyses of approximately 80 genes common between these data sets were performed in a murine adenoma model. The combined data sets describe a core target gene program, the intestinal Wnt/TCF signature gene set, which is responsible for the transformation of human intestinal epithelial cells. The genes were invariably expressed in adenomas, yet could be subdivided into 3 modules, based on expression in distinct crypt compartments. A module of 17 genes was specifically expressed at the position of the crypt stem cell.
                Bookmark

                Author and article information

                Journal
                Carcinogenesis
                Carcinogenesis
                carcin
                carcin
                Carcinogenesis
                Oxford University Press (UK )
                0143-3334
                1460-2180
                June 2014
                8 January 2014
                8 January 2014
                : 35
                : 6
                : 1217-1227
                Affiliations
                Laboratory of Intestinal Physiopathology, Department of Anatomy and Cell Biology and
                1Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke , Quebec J1H 5N4, Canada
                Author notes
                *To whom correspondence should be addressed. Tel: +1 819 564 5269; Fax: +1 819 564 5320; Email: jean-francois.beaulieu@ 123456usherbrooke.ca
                Article
                10.1093/carcin/bgu006
                4043246
                24403311
                d844cf19-34c5-4a40-85f7-58a06a7c5f88
                © The Author 2014. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 25 July 2013
                : 30 November 2013
                : 15 December 2013
                Page count
                Pages: 11
                Categories
                Original Manuscript

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article