100
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Early-life antibiotic use is associated with increased risk for metabolic and immunological diseases, and mouse studies indicate a causal role of the disrupted microbiome. However, little is known about the impacts of antibiotics on the developing microbiome of children. Here we use phylogenetics, metagenomics and individual antibiotic purchase records to show that macrolide use in 2–7 year-old Finnish children ( N=142; sampled at two time points) is associated with a long-lasting shift in microbiota composition and metabolism. The shift includes depletion of Actinobacteria, increase in Bacteroidetes and Proteobacteria, decrease in bile-salt hydrolase and increase in macrolide resistance. Furthermore, macrolide use in early life is associated with increased risk of asthma and predisposes to antibiotic-associated weight gain. Overweight and asthmatic children have distinct microbiota compositions. Penicillins leave a weaker mark on the microbiota than macrolides. Our results support the idea that, without compromising clinical practice, the impact on the intestinal microbiota should be considered when prescribing antibiotics.

          Abstract

          The impact of antibiotics on the microbiome and health of children is poorly understood. Here, Korpela et al. study the gut microbiome of 142 children and show that the use of macrolides, but not penicillins, is associated with long-lasting shifts in microbiota composition and increased risk of asthma and overweight.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Antibiotic growth promoters in agriculture: history and mode of action

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age.

            Changes in the human microbiome have been suggested as a risk factor for a number of lifestyle-related disorders, such as atopic diseases, possibly through a modifying influence on immune maturation in infancy. We aimed to explore the association between neonatal fecal flora and the development of atopic disorders until age 6 years, hypothesizing that the diversity of the intestinal microbiota influences disease development. We studied the intestinal microbiota in infants in the Copenhagen Prospective Study on Asthma in Childhood, a clinical study of a birth cohort of 411 high-risk children followed for 6 years by clinical assessments at 6-month intervals, as well as at acute symptom exacerbations. Bacterial flora was analyzed at 1 and 12 months of age by using molecular techniques based on 16S rRNA PCR combined with denaturing gradient gel electrophoresis, as well as conventional culturing. The main outcome measures were the development of allergic sensitization (skin test and specific serum IgE), allergic rhinitis, peripheral blood eosinophil counts, asthma, and atopic dermatitis during the first 6 years of life. We found that bacterial diversity in the early intestinal flora 1 and 12 months after birth was inversely associated with the risk of allergic sensitization (serum specific IgE P = .003; skin prick test P = .017), peripheral blood eosinophils (P = .034), and allergic rhinitis (P = .007). There was no association with the development of asthma or atopic dermatitis. Reduced bacterial diversity of the infant's intestinal flora was associated with increased risk of allergic sensitization, allergic rhinitis, and peripheral blood eosinophilia, but not asthma or atopic dermatitis, in the first 6 years of life. These results support the general hypothesis that an imbalance in the intestinal microbiome is influencing the development of lifestyle-related disorders, such as allergic disease. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut.

              Alterations in the gastrointestinal microbiota have been implicated in obesity in mice and humans, but the key microbial functions influencing host energy metabolism and adiposity remain to be determined. Despite an increased understanding of the genetic content of the gastrointestinal microbiome, functional analyses of common microbial gene sets are required. We established a controlled expression system for the parallel functional analysis of microbial alleles in the murine gut. Using this approach we show that bacterial bile salt hydrolase (BSH) mediates a microbe-host dialogue that functionally regulates host lipid metabolism and plays a profound role in cholesterol metabolism and weight gain in the host. Expression of cloned BSH enzymes in the gastrointestinal tract of gnotobiotic or conventionally raised mice significantly altered plasma bile acid signatures and regulated transcription of key genes involved in lipid metabolism (Pparγ, Angptl4), cholesterol metabolism (Abcg5/8), gastrointestinal homeostasis (RegIIIγ), and circadian rhythm (Dbp, Per1/2) in the liver or small intestine. High-level expression of BSH in conventionally raised mice resulted in a significant reduction in host weight gain, plasma cholesterol, and liver triglycerides, demonstrating the overall impact of elevated BSH activity on host physiology. In addition, BSH activity in vivo varied according to BSH allele group, indicating that subtle differences in activity can have significant effects on the host. In summary, we demonstrate that bacterial BSH activity significantly impacts the systemic metabolic processes and adiposity in the host and represents a key mechanistic target for the control of obesity and hypercholesterolemia.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                26 January 2016
                2016
                : 7
                : 10410
                Affiliations
                [1 ]Immunobiology Research Program, Department of Bacteriology and Immunology, University of Helsinki , Haartmaninkatu 3, PO Box 21, 00014 Helsinki, Finland
                [2 ]Research Department, Social Insurance Institution , Turku, Peltolantie 3, 20720, Finland
                [3 ]Valio Limited , R&D, Meijeritie 4, 00370 Helsinki, Finland
                [4 ]European Molecular Biology Laboratory , PO Box 1022.40, 69012 Heidelberg, Germany
                [5 ]Department of Veterinary Biosciences, University of Helsinki , PO Box 66, 00014 Helsinki, Finland
                [6 ]Laboratory of Microbiology, Wageningen University , Dreijenplein 10, 6703 HB Wageningen, The Netherlands
                Author notes
                Article
                ncomms10410
                10.1038/ncomms10410
                4737757
                26811868
                d8458df0-c78e-4110-8299-74ad7ed53814
                Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 23 June 2015
                : 03 December 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article