32
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacological modulation of MRAP2 protein on melanocortin receptors in the sea lamprey

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Melanocortin receptors (MCRs) and their accessory proteins (MRAPs) evolutionarily first appear in the genome of sea lamprey. The most ancient melanocortin system consists of only two melanocortin receptors (slMCa and slMCb) and one MRAP2 (slMRAP2) protein, but the physiological roles have not been fully explored in this primitive species. Here, we synthesize and characterize the pharmacological features of slMRAP2 protein on two slMCRs. Our results show that the slMRAP2 protein lacks the long carboxyl terminus; it directly interacts and decreases the surface expression but enhances the α-MSH-induced agonism of slMCa and slMCb. In comparison with higher organisms such as elephant shark and zebrafish, we also demonstrate the constantly evolving regulatory function of the carboxyl terminus of MRAP2 protein, the unique antiparallel topology of slMRAP2 dimer and the homo- and hetero-dimerization of two slMCRs. This study elucidates the presence and modulation of melanocortin receptor by the accessory protein of the agnathans for the first time, which provides a better insight of the melanocortin system in ancient species of chordates.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein.

          Expression of Agouti protein is normally limited to the skin where it affects pigmentation, but ubiquitous expression causes obesity. An expressed sequence tag was identified that encodes Agouti-related protein, whose RNA is normally expressed in the hypothalamus and whose levels were increased eightfold in ob/ob mice. Recombinant Agouti-related protein was a potent, selective antagonist of Mc3r and Mc4r, melanocortin receptor subtypes implicated in weight regulation. Ubiquitous expression of human AGRP complementary DNA in transgenic mice caused obesity without altering pigmentation. Thus, Agouti-related protein is a neuropeptide implicated in the normal control of body weight downstream of leptin signaling.
            • Record: found
            • Abstract: found
            • Article: not found

            Studies on the physiological functions of the melanocortin system.

            R D Cone (2006)
            The melanocortin system refers to a set of hormonal, neuropeptidergic, and paracrine signaling pathways that are defined by components that include the five G protein-coupled melanocortin receptors; peptide agonists derived from the proopiomelanocortin preprohormone precursor; and the endogenous antagonists, agouti and agouti-related protein. This signaling system regulates a remarkably diverse array of physiological functions including pigmentation, adrenocortical steroidogenesis, energy homeostasis, natriuresis, erectile responses, energy homeostasis, and exocrine gland secretion. There are many complex and unique aspects of melanocortin signaling, such as the existence of endogenous antagonists, the agouti proteins, that act at three of the five melanocortin receptors. However, there is an aspect of melanocortin signaling that has facilitated highly reductionist approaches aimed at understanding the physiological functions of each receptor and peptide: in contrast to many peptides, the melanocortin agonists and antagonists are expressed in a limited number of very discrete locations. Similarly, the melanocortin receptors are also expressed in a limited number of discrete locations where they tend to be involved in rather circumscribed physiological functions. This review examines my laboratory's participation in the cloning of the melanocortin receptors and characterization of their physiological roles.
              • Record: found
              • Abstract: found
              • Article: not found

              Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity.

              Melanocortin receptor accessory proteins (MRAPs) modulate signaling of melanocortin receptors in vitro. To investigate the physiological role of brain-expressed melanocortin 2 receptor accessory protein 2 (MRAP2), we characterized mice with whole-body and brain-specific targeted deletion of Mrap2, both of which develop severe obesity at a young age. Mrap2 interacts directly with melanocortin 4 receptor (Mc4r), a protein previously implicated in mammalian obesity, and it enhances Mc4r-mediated generation of the second messenger cyclic adenosine monophosphate, suggesting that alterations in Mc4r signaling may be one mechanism underlying the association between Mrap2 disruption and obesity. In a study of humans with severe, early-onset obesity, we found four rare, potentially pathogenic genetic variants in MRAP2, suggesting that the gene may also contribute to body weight regulation in humans.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                April 2019
                11 March 2019
                : 8
                : 4
                : 378-388
                Affiliations
                [1]Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine , Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
                Author notes
                Correspondence should be addressed to C Zhang: zhangchao@ 123456tongji.edu.cn
                Article
                EC-19-0019
                10.1530/EC-19-0019
                6454295
                30856611
                d845cbcc-8dcf-44f9-8d92-c84c55c4a5e4
                © 2019 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 14 January 2019
                : 11 March 2019
                Categories
                Research

                melanocortin 2 receptor accessory protein 2,melanocortin receptors,sea lamprey

                Comments

                Comment on this article

                Related Documents Log