19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Batch effects and the effective design of single-cell gene expression studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single-cell RNA sequencing (scRNA-seq) can be used to characterize variation in gene expression levels at high resolution. However, the sources of experimental noise in scRNA-seq are not yet well understood. We investigated the technical variation associated with sample processing using the single-cell Fluidigm C1 platform. To do so, we processed three C1 replicates from three human induced pluripotent stem cell (iPSC) lines. We added unique molecular identifiers (UMIs) to all samples, to account for amplification bias. We found that the major source of variation in the gene expression data was driven by genotype, but we also observed substantial variation between the technical replicates. We observed that the conversion of reads to molecules using the UMIs was impacted by both biological and technical variation, indicating that UMI counts are not an unbiased estimator of gene expression levels. Based on our results, we suggest a framework for effective scRNA-seq studies.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          featureCounts: An efficient general-purpose program for assigning sequence reads to genomic features

          , , (2013)
          Next-generation sequencing technologies generate millions of short sequence reads, which are usually aligned to a reference genome. In many applications, the key information required for downstream analysis is the number of reads mapping to each genomic feature, for example to each exon or each gene. The process of counting reads is called read summarization. Read summarization is required for a great variety of genomic analyses but has so far received relatively little attention in the literature. We present featureCounts, a read summarization program suitable for counting reads generated from either RNA or genomic DNA sequencing experiments. featureCounts implements highly efficient chromosome hashing and feature blocking techniques. It is considerably faster than existing methods (by an order of magnitude for gene-level summarization) and requires far less computer memory. It works with either single or paired-end reads and provides a wide range of options appropriate for different sequencing applications. featureCounts is available under GNU General Public License as part of the Subread (http://subread.sourceforge.net) or Rsubread (http://www.bioconductor.org) software packages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.

            A major goal of biology is to provide a quantitative description of cellular behaviour. This task, however, has been hampered by the difficulty in measuring protein abundances and their variation. Here we present a strategy that pairs high-throughput flow cytometry and a library of GFP-tagged yeast strains to monitor rapidly and precisely protein levels at single-cell resolution. Bulk protein abundance measurements of >2,500 proteins in rich and minimal media provide a detailed view of the cellular response to these conditions, and capture many changes not observed by DNA microarray analyses. Our single-cell data argue that noise in protein expression is dominated by the stochastic production/destruction of messenger RNAs. Beyond this global trend, there are dramatic protein-specific differences in noise that are strongly correlated with a protein's mode of transcription and its function. For example, proteins that respond to environmental changes are noisy whereas those involved in protein synthesis are quiet. Thus, these studies reveal a remarkable structure to biological noise and suggest that protein noise levels have been selected to reflect the costs and potential benefits of this variation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells

              Recent molecular studies have revealed that, even when derived from a seemingly homogenous population, individual cells can exhibit substantial differences in gene expression, protein levels, and phenotypic output 1–5 , with important functional consequences 4,5 . Existing studies of cellular heterogeneity, however, have typically measured only a few pre-selected RNAs 1,2 or proteins 5,6 simultaneously because genomic profiling methods 3 could not be applied to single cells until very recently 7–10 . Here, we use single-cell RNA-Seq to investigate heterogeneity in the response of bone marrow derived dendritic cells (BMDCs) to lipopolysaccharide (LPS). We find extensive, and previously unobserved, bimodal variation in mRNA abundance and splicing patterns, which we validate by RNA-fluorescence in situ hybridization (RNA-FISH) for select transcripts. In particular, hundreds of key immune genes are bimodally expressed across cells, surprisingly even for genes that are very highly expressed at the population average. Moreover, splicing patterns demonstrate previously unobserved levels of heterogeneity between cells. Some of the observed bimodality can be attributed to closely related, yet distinct, known maturity states of BMDCs; other portions reflect differences in the usage of key regulatory circuits. For example, we identify a module of 137 highly variable, yet co-regulated, antiviral response genes. Using cells from knockout mice, we show that variability in this module may be propagated through an interferon feedback circuit involving the transcriptional regulators Stat2 and Irf7. Our study demonstrates the power and promise of single-cell genomics in uncovering functional diversity between cells and in deciphering cell states and circuits.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                03 January 2017
                2017
                : 7
                : 39921
                Affiliations
                [1 ]Department of Human Genetics, University of Chicago , Chicago, Illinois, USA
                [2 ]Committee on Genetics, Genomics, and Systems Biology, University of Chicago , Chicago, Illinois, USA
                [3 ]Department of Genetics, Stanford University , Stanford, CA, USA
                [4 ]Department of Radiology, Stanford University , Stanford, CA, USA
                [5 ]Department of Biology, Stanford University , Stanford, CA, USA
                [6 ]Howard Hughes Medical Institute, Stanford University , CA, USA
                [7 ]Department of Medicine, University of Chicago , Chicago, Illinois, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep39921
                10.1038/srep39921
                5206706
                28045081
                d84a2ac1-6161-4fc2-9b09-937afc0677d8
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 07 September 2016
                : 29 November 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article