10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human–machine interaction

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supersensitive all-fabric pressure sensors with a bottom interdigitated textile electrode screen-printed using silver paste and a top bridge of AgNW-coated cotton fabric are successfully fabricated for human motion monitoring and human–machine interaction.

          Abstract

          Integrating the advantages of ultrahigh sensitivity, good breathability, low-cost and large-area fabrication processes, and facile integration with other functional devices is full of challenges for wearable pressure sensors. Here, a novel all-fabric piezoresistive pressure sensor is designed with a bottom interdigitated textile electrode screen-printed using silver paste and a top bridge of AgNW-coated cotton fabric. The entire fabrication process is facile, economical and suitable for large-scale integrated production. Benefiting from the highly porous microstructure, large surface roughness and ultra-low resistance of the conductive fabric, our piezoresistive pressure sensors show excellent detection performance, including an extra-high sensitivity of 2.46 × 10 4 kPa −1 to 5.65 × 10 5 kPa −1 over a wide pressure regime (0–30 kPa), a giant on/off ratio of ≈10 6, a fast response time (6 ms), and a low detection limit (0.76 Pa). Thanks to these merits, the devices not only have the ability to detect various tiny signals of the human body, but also can be widely applied in a human–computer interactive system as a real wearable sensor platform, which was demonstrated by playing the piano and computer games.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Multifunctional wearable devices for diagnosis and therapy of movement disorders.

          Wearable systems that monitor muscle activity, store data and deliver feedback therapy are the next frontier in personalized medicine and healthcare. However, technical challenges, such as the fabrication of high-performance, energy-efficient sensors and memory modules that are in intimate mechanical contact with soft tissues, in conjunction with controlled delivery of therapeutic agents, limit the wide-scale adoption of such systems. Here, we describe materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address these challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate. Representative examples of such systems include physiological sensors, non-volatile memory and drug-release actuators. Quantitative analyses of the electronics, mechanics, heat-transfer and drug-diffusion characteristics validate the operation of individual components, thereby enabling system-level multifunctionalities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals.

            Flexible and transparent E-skin devices are achieved by combining silk-molded micro-patterned polydimethylsiloxane (PDMS) with single-walled carbon nanotube (SWNT) ultrathin films. The E-skin sensing device demonstrates superior sensitivity, a very low detectable pressure limit, a fast response time, and a high stability for the detection of superslight pressures, which may broaden their potential use as cost-effective wearable electronics for healthcare applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              User-interactive electronic skin for instantaneous pressure visualization.

              Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components--thin-film transistor, pressure sensor and OLED arrays--are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.
                Bookmark

                Author and article information

                Journal
                JMCCCX
                Journal of Materials Chemistry C
                J. Mater. Chem. C
                Royal Society of Chemistry (RSC)
                2050-7526
                2050-7534
                December 13 2018
                2018
                : 6
                : 48
                : 13120-13127
                Affiliations
                [1 ]State Key Laboratory of Electronic Thin Films and Integrated Devices
                [2 ]School of Optoelectronic Science and Engineering
                [3 ]University of Electronic Science and Technology of China (UESTC)
                [4 ]Chengdu 610054
                [5 ]P. R. China
                [6 ]Research Institute for New Materials Technology
                [7 ]Chongqing University of Arts and Sciences
                [8 ]Chongqing 402160
                Article
                10.1039/C8TC02716A
                d85daa15-ba6f-4a2e-bb9d-bc0c67b2bd9f
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article