11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Middle East Respiratory Syndrome Coronavirus Recombination and the Evolution of Science and Public Health in China

      article-commentary
      mBio
      American Society of Microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          COMMENTARY Since the discovery of Middle East respiratory syndrome coronavirus (MERS-CoV) in late 2012, more than 1,400 people have received a laboratory diagnosis of MERS and over 450 people have died. Most of the cases have been documented on the Arabian Peninsula; however, sporadic cases have also been reported in Europe and Asia in travelers returning from the Middle East. Except in South Korea, the imported MERS-CoV has not established a substantive chain of infection beyond the index traveler case. The spread within South Korea to 186 people, resulting in 36 deaths, has been attributed to a delay in diagnosis and isolation of the index case, lapses in infection control, and care of patients by family members rather than trained medical staff. This interpretation was supported by a preliminary report from a World Health Organization panel wherein no mutations linked to transmissibility or pathogenesis were found in sequences obtained in South Korea and China. However, in a recent mBio article, Wang and colleagues report detailed genomic analysis of the virus implicated in the first known case of MERS in China (1). They describe 11 amino acid substitutions, 8 of them shared with the South Korean strain and MERS-CoV strains recently circulating in Saudi Arabia, and define a recombination event that they speculate may have contributed to enhanced human-to-human transmission of MERS-CoV and the rapid spread of the virus in South Korea. Recombination is common in coronaviruses and has been implicated in the emergence of pathogenic coronaviruses in poultry, cats, and pigs (2, 3). It would not be surprising, therefore, if recombination were to occur in MERS-CoV and to result in enhanced transmission or virulence. Wang et al. clearly demonstrate through bootstrap scanning and single-nucleotide polymorphism analyses that the viruses found in South Korea and China represent a recombinant virus that contains a clade B group 3 coronavirus sequence in the 5′ portion of the genome and a clade B group 5 coronavirus sequence in the 3′ end of the genome, with a site of recombination between nucleotide positions 17206 and 17311, a region that spans the junction between the ORF1a and S genes. They note that the recombination is evident in recent strains identified in human cases of MERS in Saudi Arabia and estimate that the recombination occurred in Saudi Arabia in the later months of 2014. The paper is important in two respects. First, the recombination event may have resulted in the evolution of a new lineage of MERS-CoV with different transmission properties. Additional field work in epidemiology and studies of recombinant viruses in culture and in animal models will be required to determine whether this proves true. However, the paper itself is evidence of an evolutionary advance in scientific expertise and transparency that is at least as important for microbiology and public health. China has come a long way since the emergence of SARS-CoV in 2002/2003.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Recoding of the Vesicular Stomatitis Virus L Gene by Computer-Aided Design Provides a Live, Attenuated Vaccine Candidate

          ABSTRACT Codon pair bias (CPB), which has been observed in all organisms, is a neglected genomic phenomenon that affects gene expression. CPB results from synonymous codons that are paired more or less frequently in ORFeomes regardless of codon bias. The effect of an individual codon pair change is usually small, but when it is amplified by large-scale genome recoding, strikingly altered biological phenotypes are observed. The utility of codon pair bias in the development of live attenuated vaccines was recently demonstrated by recodings of poliovirus (a positive-strand RNA virus) and influenza virus (a negative-strand segmented RNA virus). Here, the L gene of vesicular stomatitis virus (VSV), a nonsegmented negative-sense RNA virus, was partially recoded based on codon pair bias. Totals of 858 and 623 silent mutations were introduced into a 5′-terminal segment of the viral L gene (designated L1) to create sequences containing either overrepresented or underrepresented codon pairs, designated L1sdmax and L1min, respectively. Analysis revealed that recombinant VSV containing the L1min sequence could not be recovered, whereas the virus with the sdmax sequence showed a modest level of attenuation in cell culture. More strikingly, in mice the L1sdmax virus was almost as immunogenic as the parental strain but highly attenuated. Taken together, these results open a new road to attain a balance between VSV virulence and immunogenicity, which could serve as an example for the attenuation of other negative-strand, nonsegmented RNA viruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Evidence of Recombinant Strains of Porcine Epidemic Diarrhea Virus, United States, 2013

            To investigate the evolutionary process by which porcine epidemic diarrhea virus (PEDV) in the United States hypothetically descended from strains in China, we analyzed PEDV-positive samples collected in China during January 2012–July 2013. Recombination in 2 strain sublineages was likely associated with identification of PEDV in the United States in 2013.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Autochthonous Melioidosis in Humans, Madagascar, 2012 and 2013

              Melioidosis is an often fatal infectious disease affecting humans and animals in the tropics. Only sporadic cases have been reported from Africa and the Indian Ocean region. We describe 2 confirmed autochthonous cases of human melioidosis in Madagascar, both from novel genotypes of Burkholderia pseudomallei.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                8 September 2015
                Sep-Oct 2015
                : 6
                : 5
                : e01381-15
                Affiliations
                [1]Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
                Author notes
                Address correspondence to wil2001@ 123456columbia.edu .
                Article
                mBio01381-15
                10.1128/mBio.01381-15
                4600119
                26350973
                d8624546-ddcf-4d4e-b6ea-2fe92be0b147
                Copyright © 2015 Lipkin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                supplementary-material: 0, Figures: 0, Tables: 0, Equations: 0, References: 3, Pages: 1, Words: 786
                Categories
                Commentary
                Custom metadata
                September/October 2015

                Life sciences
                Life sciences

                Comments

                Comment on this article