14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Predicting plant vulnerability to drought in biodiverse regions using functional traits

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Regional vegetation die-off in response to global-change-type drought.

          Future drought is projected to occur under warmer temperature conditions as climate change progresses, referred to here as global-change-type drought, yet quantitative assessments of the triggers and potential extent of drought-induced vegetation die-off remain pivotal uncertainties in assessing climate-change impacts. Of particular concern is regional-scale mortality of overstory trees, which rapidly alters ecosystem type, associated ecosystem properties, and land surface conditions for decades. Here, we quantify regional-scale vegetation die-off across southwestern North American woodlands in 2002-2003 in response to drought and associated bark beetle infestations. At an intensively studied site within the region, we quantified that after 15 months of depleted soil water content, >90% of the dominant, overstory tree species (Pinus edulis, a piñon) died. The die-off was reflected in changes in a remotely sensed index of vegetation greenness (Normalized Difference Vegetation Index), not only at the intensively studied site but also across the region, extending over 12,000 km2 or more; aerial and field surveys confirmed the general extent of the die-off. Notably, the recent drought was warmer than the previous subcontinental drought of the 1950s. The limited, available observations suggest that die-off from the recent drought was more extensive than that from the previous drought, extending into wetter sites within the tree species' distribution. Our results quantify a trigger leading to rapid, drought-induced die-off of overstory woody plants at subcontinental scale and highlight the potential for such die-off to be more severe and extensive for future global-change-type drought under warmer conditions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The interdependence of mechanisms underlying climate-driven vegetation mortality.

              Climate-driven vegetation mortality is occurring globally and is predicted to increase in the near future. The expected climate feedbacks of regional-scale mortality events have intensified the need to improve the simple mortality algorithms used for future predictions, but uncertainty regarding mortality processes precludes mechanistic modeling. By integrating new evidence from a wide range of fields, we conclude that hydraulic function and carbohydrate and defense metabolism have numerous potential failure points, and that these processes are strongly interdependent, both with each other and with destructive pathogen and insect populations. Crucially, most of these mechanisms and their interdependencies are likely to become amplified under a warmer, drier climate. Here, we outline the observations and experiments needed to test this interdependence and to improve simulations of this emergent global phenomenon. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                May 05 2015
                May 05 2015
                : 112
                : 18
                : 5744-5749
                Article
                10.1073/pnas.1503376112
                4426410
                25902534
                d8627c8f-c7bf-4980-89a3-ab1a4799c679
                © 2015
                History

                Comments

                Comment on this article