37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Secretome profiling of Cryptococcus neoformans reveals regulation of a subset of virulence-associated proteins and potential biomarkers by protein kinase A

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The pathogenic yeast Cryptococcus neoformans causes life-threatening meningoencephalitis in individuals suffering from HIV/AIDS. The cyclic-AMP/protein kinase A (PKA) signal transduction pathway regulates the production of extracellular virulence factors in C. neoformans, but the influence of the pathway on the secretome has not been investigated. In this study, we performed quantitative proteomics using galactose-inducible and glucose-repressible expression of the PKA1 gene encoding the catalytic subunit of PKA to identify regulated proteins in the secretome.

          Methods

          The proteins in the supernatants of cultures of C. neoformans were precipitated and identified using liquid chromatography-coupled tandem mass spectrometry. We also employed multiple reaction monitoring in a targeted approach to identify fungal proteins in samples from macrophages after phagocytosis of C. neoformans cells, as well as from the blood and bronchoalveolar fluid of infected mice.

          Results

          We identified 61 secreted proteins and found that changes in PKA1 expression influenced the extracellular abundance of five proteins, including the Cig1 and Aph1 proteins with known roles in virulence. We also observed a change in the secretome profile upon induction of Pka1 from proteins primarily involved in catabolic and metabolic processes to an expanded set that included proteins for translational regulation and the response to stress. We further characterized the secretome data using enrichment analysis and by predicting conventional versus non-conventional secretion. Targeted proteomics of the Pka1-regulated proteins allowed us to identify the secreted proteins in lysates of phagocytic cells containing C. neoformans, and in samples from infected mice. This analysis also revealed that modulation of PKA1 expression influences the intracellular survival of cryptococcal cells upon phagocytosis.

          Conclusions

          Overall, we found that the cAMP/PKA pathway regulates specific components of the secretome including proteins that affect the virulence of C. neoformans. The detection of secreted cryptococcal proteins from infected phagocytic cells and tissue samples suggests their potential utility as biomarkers of infection. The proteomics data are available via ProteomeXchange with identifiers PXD002731 and PASS00736.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12866-015-0532-3) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Proteomics Identifications (PRIDE) database and associated tools: status in 2013

          The PRoteomics IDEntifications (PRIDE, http://www.ebi.ac.uk/pride) database at the European Bioinformatics Institute is one of the most prominent data repositories of mass spectrometry (MS)-based proteomics data. Here, we summarize recent developments in the PRIDE database and related tools. First, we provide up-to-date statistics in data content, splitting the figures by groups of organisms and species, including peptide and protein identifications, and post-translational modifications. We then describe the tools that are part of the PRIDE submission pipeline, especially the recently developed PRIDE Converter 2 (new submission tool) and PRIDE Inspector (visualization and analysis tool). We also give an update about the integration of PRIDE with other MS proteomics resources in the context of the ProteomeXchange consortium. Finally, we briefly review the quality control efforts that are ongoing at present and outline our future plans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cryptococcosis in the era of AIDS--100 years after the discovery of Cryptococcus neoformans.

            Although Cryptococcus neoformans and cryptococcosis have existed for several millennia, a century has passed since the discovery of this encapsulated yeast and its devastating disease. With the advent of the AIDS pandemic, cryptococcal meningitis has emerged as a leading cause of infectious morbidity and mortality and a frequently life-threatening opportunistic mycosis among patients with AIDS. Both basic and clinical research have accelerated in the 1990s, and this review attempts to highlight some of these advances. The discussion covers recent findings, current concepts, controversies, and unresolved issues related to the ecology and genetics of C. neoformans; the surface structure of the yeast; and the mechanisms of host defense. Regarding cell-mediated immunity, CD4+ T cells are crucial for successful resistance, but CD8+ T cells may also participate significantly in the cytokine-mediated activation of anticryptococcal effector cells. In addition to cell-mediated immunity, monoclonal antibodies to the major capsular polysaccharide, the glucuronoxylomannan, offer some protection in murine models of cryptococcosis. Clinical concepts are presented that relate to the distinctive features of cryptococcosis in patients with AIDS and the diagnosis, treatment, and prevention of cryptococcosis in AIDS patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport.

              The mechanisms by which macromolecules are transported through the cell wall of fungi are not known. A central question in the biology of Cryptococcus neoformans, the causative agent of cryptococcosis, is the mechanism by which capsular polysaccharide synthesized inside the cell is exported to the extracellular environment for capsule assembly and release. We demonstrate that C. neoformans produces extracellular vesicles during in vitro growth and animal infection. Vesicular compartments, which are transferred to the extracellular space by cell wall passage, contain glucuronoxylomannan (GXM), a component of the cryptococcal capsule, and key lipids, such as glucosylceramide and sterols. A correlation between GXM-containing vesicles and capsule expression was observed. The results imply a novel mechanism for the release of the major virulence factor of C. neoformans whereby polysaccharide packaged in lipid vesicles crosses the cell wall and the capsule network to reach the extracellular environment.
                Bookmark

                Author and article information

                Contributors
                jenngedd13@gmail.com
                daniel.croll@usys.ethz.ch
                mcaza@msl.ubc.ca
                nstoynov@mail.ubc.ca
                foster@chibi.ubc.ca
                kronstad@msl.ubc.ca
                Journal
                BMC Microbiol
                BMC Microbiol
                BMC Microbiology
                BioMed Central (London )
                1471-2180
                9 October 2015
                9 October 2015
                2015
                : 15
                : 206
                Affiliations
                [ ]Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
                [ ]Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
                [ ]Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
                Article
                532
                10.1186/s12866-015-0532-3
                4600298
                26453029
                d86b889e-94bb-4d85-bc11-2055e2205a4e
                © Geddes et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 7 May 2015
                : 25 September 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Microbiology & Virology
                quantitative proteomics,fungal pathogenesis,secretome,pka,virulence factors,biomarkers,multiple reaction monitoring

                Comments

                Comment on this article