15
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      The Organization of CRF Neuronal Pathways in Toads: Evidence that Retinal Afferents Do Not Contribute Significantly to Tectal CRF Content

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous work has suggested that the peptide corticotropin-releasing factor (CRF) acts to inhibit visually guided feeding in anurans, but little is known about potential targets for CRF within the subcortical visuomotor circuitry. Here we investigated the relationship between CRF neuronal organization and visual pathways in toads. CRF-immunoreactive (ir) neurons and fibers were widely distributed throughout the ventral subpallial telencephalon and hypothalamus, although few fibers were found in telencephalic areas, such as the striatum, that are known to project to the tectum in anurans. Large populations of CRF-ir cells were observed in the bed nucleus of the stria terminalis and preoptic area as well as in the ventral infundibular hypothalamus. CRF-ir neurons and fibers also were observed in several midbrain and brain stem areas. Colchicine treatment significantly enhanced CRF-ir neurons and fibers throughout the brain, and revealed CRF-ir cell groups in several brain areas (including the dorsal hypothalamus) that were not observed in untreated animals. Intrinsic CRF-immunoreactive neurons were routinely observed in cell layer 8 and sometimes in layer 6 of the optic tectum in both untreated and colchicine-treated animals. CRF was detected in toad optic tectum by radioimmunoassay, although tectal CRF content was less than that of the hypothalamus and forebrain. Unilateral eye ablation did not affect CRF content of the contralateral optic tectum. We conclude that CRF-producing neurons are widely distributed in several areas of the toad brain known to be involved in regulating the behavioral, autonomic and endocrine response to stressors, including the optic tectum and several brain areas known to project to the optic tectum. Furthermore, retinal afferents do not contribute significantly to tectal CRF content.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Article: not found

          Organization of Ovine Corticotropin-Releasing Factor Immunoreactive Cells and Fibers in the Rat Brain: An Immunohistochemical Study

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution and physiology of the corticotropin-releasing factor (CRF) family of neuropeptides in vertebrates.

            Corticotropin-releasing factor (CRF), urotensin-I, urocortin and sauvagine belong to a family of related neuropeptides found throughout chordate taxa and likely stem from an ancestral peptide precursor early in metazoan ancestry. In vertebrates, current evidence suggests that CRF on one hand, and urotensin-I, urocortin and sauvagine, on the other, form paralogous lineages. Urocortin and sauvagine appear to represent tetrapod orthologues of fish urotensin-I. Sauvagine's unique structure may reflect the distinctly derived evolutionary history of the anura and the amphibia in general. The physiological actions of these peptides are mediated by at least two receptor subtypes and a soluble binding protein. Although the earliest functions of these peptides may have been associated with osmoregulation and diuresis, a constellation of physiological effects associated with stress and anxiety, vasoregulation, thermoregulation, growth and metabolism, metamorphosis and reproduction have been identified in various vertebrate species. The elaboration of neural circuitry for each of the two paralogous neuropeptide systems appears to have followed distinct pathways in the actinopterygian and sarcopterygian lineages of vertebrates. A comparision of the functional differences between these two lineages predicts additional functions of these peptides. Copyright 1999 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat.

              To clarify the anatomical organization that allows for the synergy of vasopressin and oxytocin with corticotropin-releasing factor (CRF) in promoting adrenocorticotropic hormone secretion from the anterior pituitary, immunohistochemical double staining methods were used to compare the distribution of these peptides in the hypothalamic paraventricular nucleus of normal, colchicine-treated, and adrenalectomized male rats. In untreated animals, a few CRF-stained cells were found in the parvocellular division of the paraventricular nucleus, while brightly stained oxytocin- and vasopressin-immunoreactive cells were centered in the magnocellular division. In animals treated with colchicine, and inhibitor of axonal transport, large numbers of CRF-stained cells were found in the parvocellular division of the nucleus, and 1-2% of these also stained with antivasopressin. As reported previously, a substantial number of oxytocin-stained cells, centered in a discrete anterior part of the magnocellular division, also expressed CRF immunoreactivity. In contrast, after adrenalectomy, CRF immunostaining of cells in the parvocellular division was enhanced selectively and greater than 70% of these cells also stained positively for vasopressin. The distribution of oxytocin-stained cells was not influenced by adrenalectomy. The unusual localization of vasopressin immunoreactivity in parvocellular neurosecretory neurons in the adrenalectomized rat suggests that a single population of cells can produce CRF and vasopressin, both of which are potent promoters of adrenocorticotropic hormone secretion. These findings indicate that there is a state-dependent plasticity in the expression of biologically active peptides by individual neuroendocrine neurons.
                Bookmark

                Author and article information

                Journal
                BBE
                Brain Behav Evol
                10.1159/issn.0006-8977
                Brain, Behavior and Evolution
                S. Karger AG
                0006-8977
                1421-9743
                2010
                October 2010
                30 September 2010
                : 76
                : 1
                : 71-86
                Affiliations
                Department of Biological Sciences, Texas Tech University, Lubbock, Tex., USA
                Author notes
                *Dr. James A. Carr, Department of Biological Sciences, Texas Tech University, Box 4-3131, Lubbock, TX 79409-3131 (USA), Tel. +1 806 742 2724, Fax +1 806 742 2963, E-Mail james.carr@ttu.edu
                Article
                319555 Brain Behav Evol 2010;76:71–86
                10.1159/000319555
                20926857
                d86df79a-f97f-47d8-9b06-5cfe7c0691b4
                © 2010 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 19 May 2010
                : 19 July 2010
                Page count
                Figures: 5, Tables: 5, Pages: 16
                Categories
                Original Paper

                Geriatric medicine,Neurology,Cardiovascular Medicine,Neurosciences,Clinical Psychology & Psychiatry,Public health
                Visual system,Anuran,Amphibian,Stress,Corticotropin-releasing factor,Tectum

                Comments

                Comment on this article