799
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A New Human Somatic Stem Cell from Placental Cord Blood with Intrinsic Pluripotent Differentiation Potential

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here a new, intrinsically pluripotent, CD45-negative population from human cord blood, termed unrestricted somatic stem cells (USSCs) is described. This rare population grows adherently and can be expanded to 10 15 cells without losing pluripotency. In vitro USSCs showed homogeneous differentiation into osteoblasts, chondroblasts, adipocytes, and hematopoietic and neural cells including astrocytes and neurons that express neurofilament, sodium channel protein, and various neurotransmitter phenotypes. Stereotactic implantation of USSCs into intact adult rat brain revealed that human Tau-positive cells persisted for up to 3 mo and showed migratory activity and a typical neuron-like morphology. In vivo differentiation of USSCs along mesodermal and endodermal pathways was demonstrated in animal models. Bony reconstitution was observed after transplantation of USSC-loaded calcium phosphate cylinders in nude rat femurs. Chondrogenesis occurred after transplanting cell-loaded gelfoam sponges into nude mice. Transplantation of USSCs in a noninjury model, the preimmune fetal sheep, resulted in up to 5% human hematopoietic engraftment. More than 20% albumin-producing human parenchymal hepatic cells with absence of cell fusion and substantial numbers of human cardiomyocytes in both atria and ventricles of the sheep heart were detected many months after USSC transplantation. No tumor formation was observed in any of these animals.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Mesenchymal progenitor cells in human umbilical cord blood.

          Haemopoiesis is sustained by two main cellular components, the haematopoietic cells (HSCs) and the mesenchymal progenitor cells (MPCs). MPCs are multipotent and are the precursors for marrow stroma, bone, cartilage, muscle and connective tissues. Although the presence of HSCs in umbilical cord blood (UCB) is well known, that of MPCs has been not fully evaluated. In this study, we examined the ability of UCB harvests to generate in culture cells with characteristics of MPCs. Results showed that UCB-derived mononuclear cells, when set in culture, gave rise to adherent cells, which exhibited either an osteoclast- or a mesenchymal-like phenotype. Cells with the osteoclast phenotype were multinucleated, expressed TRAP activity and antigens CD45 and CD51/CD61. In turn, cells with the mesenchymal phenotype displayed a fibroblast-like morphology and expressed several MPC-related antigens (SH2, SH3, SH4, ASMA, MAB 1470, CD13, CD29 and CD49e). Our results suggest that preterm, as compared with term, cord blood is richer in mesenchymal progenitors, similar to haematopoietic progenitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.

            Human bone marrow contains a population of cells capable of differentiating along multiple mesenchymal cell lineages. Recently, techniques for the purification and culture-expansion of these human marrow-derived Mesenchymal Stem Cells (MSCs) have been developed. The goals of the current study were to establish a reproducible system for the in vitro osteogenic differentiation of human MSCs, and to characterize the effect of changes in the microenvironment upon the process. MSCs derived from 2nd or 3rd passage were cultured for 16 days in various base media containing 1 to 1000 nM dexamethasone (Dex), 0.01 to 4 mM L-ascorbic acid-2-phosphate (AsAP) or 0.25 mM ascorbic acid, and 1 to 10 mM beta-glycerophosphate (beta GP). Optimal osteogenic differentiation, as determined by osteoblastic morphology, expression of alkaline phosphatase (APase), reactivity with anti-osteogenic cell surface monoclonal antibodies, modulation of osteocalcin mRNA production, and the formation of a mineralized extracellular matrix containing hydroxyapatite was achieved with DMEM base medium plus 100 nM Dex, 0.05 mM AsAP, and 10 mM beta GP. The formation of a continuously interconnected network of APase-positive cells and mineralized matrix supports the characterization of this progenitor population as homogeneous. While higher initial seeding densities did not affect cell number of APase activity, significantly more mineral was deposited in these cultures, suggesting that events which occur early in the differentiation process are linked to end-stage phenotypic expression. Furthermore, cultures allowed to concentrate their soluble products in the media produced more mineralized matrix, thereby implying a role for autocrine or paracrine factors synthesized by human MSCs undergoing osteoblastic lineage progression. This culture system is responsive to subtle manipulations including the basal nutrient medium, dose of physiologic supplements, cell seeding density, and volume of tissue culture medium. Cultured human MSCs provide a useful model for evaluating the multiple factors responsible for the step-wise progression of cells from undifferentiated precursors to secretory osteoblasts, and eventually terminally differentiated osteocytes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.

              Purification of rare hematopoietic stem cell(s) (HSC) to homogeneity is required to study their self-renewal, differentiation, phenotype, and homing. Long-term repopulation (LTR) of irradiated hosts and serial transplantation to secondary hosts represent the gold standard for demonstrating self-renewal and differentiation, the defining properties of HSC. We show that rare cells that home to bone marrow can LTR primary and secondary recipients. During the homing, CD34 and SCA-1 expression increases uniquely on cells that home to marrow. These adult bone marrow cells have tremendous differentiative capacity as they can also differentiate into epithelial cells of the liver, lung, GI tract, and skin. This finding may contribute to clinical treatment of genetic disease or tissue repair.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                19 July 2004
                : 200
                : 2
                : 123-135
                Affiliations
                [1 ]Institute for Transplantation Diagnostics and Cell Therapeutics, University of Düsseldorf Medical School, 40225 Düsseldorf, Germany
                [2 ]Department of Pharmacology, University of Nevada Medical School, Reno, NV 89523
                [3 ]Molecular Neurobiology Laboratory, Department of Neurology, University of Düsseldorf Medical School, 40225 Düsseldorf, Germany
                [4 ]Kourion Therapeutics, 40764 Langenfeld, Germany
                [5 ]Skeletal Research Center, Case Western Reserve University, Cleveland, OH 44106
                [6 ]Veterans Administration Medical Center, University of Nevada, Reno, NV 89557
                Author notes

                Address correspondence to Gesine Kögler, Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Moorenstrasse 5, Bldg. 14.80, 40225 Düsseldorf, Germany. Phone: 49-211-8116794. Fax: 49-211-8116792. email: koegler@ 123456itz.uni-duesseldorf.de

                Article
                20040440
                10.1084/jem.20040440
                2212008
                15263023
                d86f50f8-aed5-4a81-9e6c-adf622687e4c
                Copyright © 2004, The Rockefeller University Press
                History
                : 8 March 2004
                : 19 May 2004
                Categories
                Article

                Medicine
                regenerative medicine,developmental potential,cord blood,ex vivo expansion
                Medicine
                regenerative medicine, developmental potential, cord blood, ex vivo expansion

                Comments

                Comment on this article