This paper studies the tracking control problem for an uncertain n -link robot with full-state constraints. The rigid robotic manipulator is described as a multiinput and multioutput system. Adaptive neural network (NN) control for the robotic system with full-state constraints is designed. In the control design, the adaptive NNs are adopted to handle system uncertainties and disturbances. The Moore-Penrose inverse term is employed in order to prevent the violation of the full-state constraints. A barrier Lyapunov function is used to guarantee the uniform ultimate boundedness of the closed-loop system. The control performance of the closed-loop system is guaranteed by appropriately choosing the design parameters. Simulation studies are performed to illustrate the effectiveness of the proposed control.